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 Abstract
Bayou’s anti-entropy protocol for update propagation

between weakly consistent storage replicas is based on
pair-wise communication, the propagation of write
operations, and a set of ordering and closure constraints on
the propagation of the writes. The simplicity of the design
makes the protocol very flexible, thereby providing
support for diverse networking environments and usage
scenarios. It accommodates a variety of policies for when
and where to propagate updates. It operates over diverse
network topologies, including low-bandwidth links. It is
incremental. It enables replica convergence, and updates
can be propagated using floppy disks and similar
transportable media. Moreover, the protocol handles
replica creation and retirement in a light-weight manner.
Each of these features is enabled by only one or two of the
protocol’s design choices, and can be independently
incorporated in other systems. This paper presents the anti-
entropy protocol in detail, describing the design decisions
and resulting features.

1. Introduction
Weakly consistent replicated storage systems with an

“update anywhere” model for data modifications require a
protocol for replicas to reconcile their state, that is, a
protocol to propagate the updates introduced at one replica
to all other replicas. A key advantage of weakly consistent
replication is that, by relaxing data consistency, the
protocol for data propagation can accommodate policy
choices forwhen to reconcile,with whom to reconcile, and
even what data to reconcile. In this paper we present
Bayou’s anti-entropy protocol for replica reconciliation.
The protocol, while simple in design, has several features
intended to support diverse network environments and

usage scenarios. The contribution of this paper is to
demonstrate how the anti-entropy design, based on
pairwise-communication between replicas and the ordered
exchange of update operations stored in per replica logs,
enables this set of features and functionalities:

• Support for arbitrary communication topologies:
the protocol provides the mechanism to propagate
updates between any two replicas. In turn, the theory of
epidemics ensures that these updates transitively
propagate throughout the system [3].

• Operation over low-bandwidth networks:
reconciliation is based on the exchange of update
operations instead of full database contents, and only
updates unknown to the receiving replica are propagated.

• Incremental progress:
the protocol allows incremental progress even if
interrupted, for example, due to an involuntary network
disconnection.

• Eventual consistency:
each update eventually reaches every replica, and
replicas holding the same updates have the same
database contents.

• Efficient storage management:
the protocol allows replicas to discard logged updates to
reclaim storage resources used for reconciliation.

• Propagation through transportable media:
one replica can send updates to another by storing the
updates on transportable media, like diskettes, without
ever having to establish a physical network connection.

• Light-weight management of dynamic replica sets:
the protocol supports the creation and retirement of a
replica through communication with only one available
replica.

• Arbitrary policy choices:
any policy choices for when to reconcile and with which
replicas to reconcile are supported by the anti-entropy
mechanism. The policy need only ensure that there be
an eventual communication path between any pair of
replicas.

Other weakly consistent replicated systems support
subsets of these functionalities. For example, Coda’s
reconciliation protocols allow server replicas to reconcile
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with each other, and mobile replicas to reconcile with
servers, but mobiles cannot reconcile amongst themselves
[11]. In Ficus, reconciliation can occur between any pair of
replicas, however server creation and retirement requires
coordination among all replicas [7]. Oracle 7 has a two-
level hierarchy of replicas: master replicas send their
transactions to all other masters, but cannot forward
transactions received from other masters; a snapshot
replica can only reconcile with its specific master,
independently of the availability of other masters [16].
Gray et al. also proposed a two-tier replication model that,
in contrast to Oracle’s system, ensures convergence of the
replicas but does not allow reconciliation between mobile
replicas [6]. Golding’s time-stamped anti-entropy protocol
[4] comes closest to Bayou’s. Many of the mechanisms in
his design are similar, however he suggests a heavier
weight mechanism to create replicas and a less aggressive
approach for replicas to reclaim storage resources.

The Bayou system places additional requirements on its
anti-entropy protocol due to its support for conflict
detection and resolution based on per-write dependency-
checks and merge procedures [20] and for session
guarantees [19]. By presenting the protocol in detail, along
with the design decisions that went into it, this paper
shows how the protocol design supports both these
requirements of the Bayou system, as well as the features
listed above.

We believe that all of the features enabled by Bayou’s
anti-entropy protocol are important. First, because
applications and users have different requirements for data
reconciliation, the protocol supports the replica’s ability to
choose when to reconcile and with whom to reconcile. For
example, users of personal information management
applications, like address books and calendars, can
reconcile their databases differently than enterprise-wide
databases, like the ones used for intranet web-sites.
Communication can therefore occur at “convenient” times.
Second, the protocol was designed to effectively support
the variety of networking and computing environments
these applications and users may operate in.

The paper starts with a simple protocol for anti-entropy,
highlighting the features enabled by this basic design:
support for arbitrary networking environments, support for
low bandwidth networks, and incremental progress. It then
describes protocol extensions that enable other desired
features: management of the storage resources required for
the operations log, propagation using transportable media,
support for eventual consistency, and light-weight
management of dynamic replica sets. The paper concludes
with a general discussion of how the anti-entropy
protocol’s features can be implemented in other systems,
potential drawbacks of the protocol, policy choices
enabled by the protocol, performance measurements, and
an expanded discussion of related work.

2. Basic Anti-entropy
The goal of anti-entropy is for two replicas to bring each

other up-to-date. In Bayou, the storage system at each
replica, also called a server, consists of a ordered log of
updates, calledwrites, and adatabase that results from the
in-order execution of these writes. A server’swrite-log
contains all writes that have been received by that Bayou
server either from an application or from other servers.
Therefore, anti-entropy needs to enable two servers to
agree on the set of writes stored in their logs.

For the purpose of this paper, a Bayou write can be
thought of as a procedure that generates a set of updates to
be applied at the database. Specifically, a Bayou write
consists of three components: a set of updates, a
dependency check, and a merge procedure. The
dependency check and the merge procedure of a write let
each server that receives the write decide if there is a
conflict and, if so, how to resolve it [20].

When a Bayou server first receives a write from a client
application, the server assigns a monotonically increasing
accept-stamp to the write. Accept-stamps can be time-
stamps or simple generation counters. As it propagates via
anti-entropy, each write carries its accept-stamp and the
identifier of the server that assigned the stamp. Accept-
stamps define a total order over all writes accepted by a
server and a partial order, which we call theaccept-order,
over all writes in the system. Write A precedes write B in
the accept-order when both were accepted by the same
server and write A was accepted before write B. Servers
store writes in their write-logs in an order that is consistent
with this accept-order.

The simplest anti-entropy protocol can now be described.
The protocol is based on the following three design
choices for the reconciliation process:
1.  it is a one-way operationbetween pairs of servers;
2.  it occurs through thepropagation of write operations;
3.  write propagation is constrained by the accept-order.

Pair-wise communication supports the reconciliation of
any two servers independently of which other servers may
be available and of how the network connection between
the servers is established. The protocol relies on the theory
of epidemics to ensure that writes eventually propagate to
all other replicas [3].

A Bayou server can choose its anti-entropy partner at
random or based on other knowledge, like network
characteristics. In fact, ad-hoc network connections
between arbitrary replicas, as possible with wireless
infrared links, can be easily supported. Alternatively, a
system could choose to force more structure on the
communication patterns between replicas, for example, by
designating master replicas and subordinate replicas that
only reconcile with their masters or by organizing replicas
into logical reconciliation rings. Structured communication
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patterns permit accurate information about the state of the
replicas to be maintained more easily and to be used to
optimize communication between the replicas. However,
by restricting the set of servers with which to
communicate, update propagation is more likely to suffer
from communication outages. We opted for the peer-to-
peer reconciliation model because of the variety of
possibly changing communication topologies it supports.

The pair-wise anti-entropy protocol was designed to be
uni-directional. One server brings another one up-to-date
by propagating those writes not yet known to the receiving
server. The advantage of one-way reconciliation is that the
process only requires an initial exchange of state
information, thereafter all the protocol’s state is kept at the
sending replica and communication flows in only one
direction, from the sender to the receiver.

The anti-entropy design is based on the exchange of
write operations because Bayou’s conflict detection and
resolution mechanisms require that writes are executed at
all replicas. Propagating operations, instead of database
contents, has other advantages. Namely, the amount of
data propagated during reconciliation is proportional to the
update activity at the replicas instead of being dependent
on the overall size of the data being replicated. Thus, when
the database size is much larger than the database updates,
the bandwidth required for the execution of the protocol is
reduced. Furthermore, the propagation of update
operations avoids any ambiguity introduced by the creation
and deletion of replicated objects. Protocols based on the
exchange of deltas or differences in data values require
additional mechanisms to correctly handle this ambiguity
because the existence of a value at one replica and the lack
thereof at another cannot correctly identify whether the
value is new or it has been deleted. Finally, write
operations can easily be stored in a log, which can then be
used during reconciliation to decide which operations need
to be propagated. Aside from the creation/deletion
ambiguity, protocols based on deltas have properties
similar to those of protocols based on the propagation of
update operations.

Our third design choice, enforcing the partial accept-
order during anti-entropy, is necessary to maintain a
closure constraint on the set of writes known to a server,
which we call theprefix-property. The prefix property
states that a serverR that holds a write stampedWi that
was initially accepted by another serverX will also hold all
writes accepted byX prior to Wi. The prefix-property
enables the use of version vectors to compactly represent
the set of writes known to a server. More precisely, the
entry for another serverX in R’s version-vector,R.V(X),
is the largest accept-stamp ofany write known toR that
was originally accepted from a client byX.

The basic anti-entropy algorithm, shown in Figure 1,
updates the receiving serverR with the writes stored at
sending serverS. This initial protocol assumes that servers
retain all writes they have ever received. This simplifying,
but impractical, assumption is later relaxed in section 3.
During anti-entropy, the prefix property and the ensuing
use of version vectors enable a server to correctly
determine which writes are unknown to the receiving
serverR by comparing the accept-stamp of a write in its
write-log with the entry corresponding to the write’s
accepting server inR’s version-vector. The algorithm
demonstrates the incremental transmission of each
unknown write from S to R.The reverse process, to
updateS from R, is identical.

The algorithm is very simple. The sending server gets the
version vector from the receiving server; then it traverses
its write-log and sends the receiving server each write not
covered by that vector. It is worth pointing out that the
protocol traverses the sender’s write-log only once.

A feature of this algorithm is that it allows anti-entropy
to be incremental. In other words, reconciliation between
two replicas can make progress independently of where the
protocol may get interrupted due to network failures or
voluntary disconnections. When a new write arrives at the
receiver it can be immediately included in the receiver’s
write-log because the sending replica ensures that the
receiving server will hold all writes necessary to satisfy the
prefix property. If interrupted while sending writes, those

anti-entropy(S,R) {
Get R.V from receiving server R
# now send all the writes unknown to R
w = first write in S.write-log
WHILE (w) DO

IF R.V(w.server-id) < w.accept-stamp THEN
# w is new for R
SendWrite(R, w)

w = next write in S.write-log
END

}

Figure 1. Basic anti-entropy executed at server S to update receiving server R
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writes transmitted successfully to the receiving server can
thus be processed and stored in the receiver’s write-log.
Most importantly, during the next execution of the
protocol, these writes need not be resent and the sending
server only propagates those writes still unknown to the
receiving server. Since the ordering in which the writes
reach the receiving server is important to ensure the prefix
property, the anti-entropy protocol needs to be
implemented over a transport layer that guarantees ordered
delivery of messages.

The basic anti-entropy algorithm has several of the
features we deem important in a reconciliation protocol: it
supports a variety communication topologies, it supports a
variety of policy choices for when and with whom to
reconcile, it operates over low bandwidth networks, and it
makes incremental progress in the presence of protocol
interruptions. Additionally, as shown in section 4, the
protocol’s incrementality and pair-wise nature make it
adaptable for reconciliation through transportable media,
like floppy disks or PCMCIA storage cards, and an
extension of the prefix property enables the light-weight
management of dynamic replica sets. Before discussing
these additional functionalities we focus on relaxing the
algorithm’s reliance of ever-growing write-logs.

3. Effective Write-log Management
Although very simple, the anti-entropy algorithm

presented in Figure 1 is based on a generally unreasonable
assumption: that servers do not discard writes from their
write-logs. In practice, although disks are continuously
becoming cheaper and denser, it is unreasonable to assume
that replicas can store ever-growing logs of operations. In
particular, mobile hosts do not have unbounded storage.
This section shows how servers can effectively manage the
storage resources of their write-logs.

Previous work on propagating logged writes observed
that a write can be discarded from a replica’s log once that
write has fully propagated to all other replicas.
Determining which writes have fully propagated can be
done by running a distributed snapshot algorithm to
establish a “cutoff” timestamp [17] or by having replicas
maintain an acknowledgment vector [4] or timetable [1,
12, 21] of which replicas have received what writes. The
problem with these approaches is that a single, long-
disconnected replica can cause the write-logs at all other
replicas to grow indefinitely. Sarin and Lynch noted this
problem and proposed forcibly removing such sites from
the replica set [17].

Bayou takes a different approach. In Bayou, each replica
can independently decide when and how aggressively to
prune a prefix of its write-log subject to the constraint that
only “stable” writes get discarded. The notion of write
stability is discussed below. An important consequence of

permitting servers to discard writes that may not have fully
propagated is that anti-entropy between servers that are too
far “out of synch” may require transferring the full
database state from one server to the other. Thus, there is a
storage-bandwidth tradeoff based on how aggressively
replicas prune their logs and how frequently replicas
perform anti-entropy. This section, after presenting
Bayou’s actual anti-entropy protocol with support for
write-log truncation, presents a discussion of this tradeoff.

3.1. Write Stability
A stable write, also called acommitted write, is one

whose position in the write-log will not change and hence
never needs to be re-executed at that server. Any
mechanism that stabilizes the position of a write in the log
can be used. Details on the benefits and drawbacks of
several write stabilizing mechanisms have been described
in a previous publication [20].

Bayou uses a primary-commit protocol to stabilize
writes, hereby ensuring that the stabilization process does
not slow down due to lengthy disconnections of some
replicas. In this protocol, one database replica is
designated as theprimary replica and its role is to stabilize
(commit) the position of a write in the log when it first
receives the write. As the primary commits a write, it
assigns a monotonically increasing commit sequence
number (CSN) to the write. The CSN is the most
significant factor used to determine a write’s position in
the log; uncommitted ortentative writes have a commit
sequence number of infinity. The commit sequence
numbers and accept-stamps define a new partial order over
the writes in the system, where write A precedes write B if
A has a smaller CSN, or if both are uncommitted and were
accepted by the same server and write A was accepted
before write B. In this order committed writes are always
totally ordered amongst themselves, are ordered before any
tentative writes, and are thereby stable. The CSN
information propagates back to all other servers through an
extension of the anti-entropy algorithm described below.
When a non-primary replica learns of a write’s final CSN,
the write becomes stable at that server since the replica
will previously have learned of all writes with lower
commit sequence numbers.

This more complex partial order, calledstable-order,
preserves the prefix property requirement of anti-entropy
because: (1) servers reconcile uncommitted writes with the
primary using the same protocol described thus far, hence
ensuring that the prefix property holds at the time writes
are committed, and (2) servers always propagate
committed writes before tentative writes as described
below. The next subsections show how the anti-entropy
protocol changes to support write commitment, and how
the stable-order is used to aggressively truncate writes
from servers’ logs.
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3.2. Propagation of Committed Writes
The part of a server’s write-log corresponding to

committed or stable writes can be represented by either
another version vector, a commit vector, or by the highest
commit sequence number known to a server, S.CSN. Since
committed writes are totally ordered by their commit
sequence numbers and they propagate in this order, the
commit sequence number represents the committed portion
of the write-log in a concise way. The algorithms in this
section will therefore use S.CSN for this purpose.

To propagate the commit information of writes, the anti-
entropy algorithm cannot just test whether a write is
covered by the receiving server’s version vector. The
receiving server may have the write, but not know that it is
committed. The sending server must therefore first inspect
all the committed writes that the receiving server may be
missing. As shown in Figure 2, the algorithm starts by
comparing the two servers’ highest commit sequence
numbers. If the sender holds committed writes that the
receiver is unaware of, it will send them to the receiver.
Notice that for writes that the receiver already has in
tentative form but for which it does not know the commit
sequence number, only a commit notification is sent. A
commit notification only includes the write’s accept-
stamp, server-id, and new commit sequence number
instead of the entire write. After the committed portion of
the write log is processed, the same algorithm as before is
used to send all the new tentative writes to the receiving
server.

3.3. Write-log Truncation
The anti-entropy protocol allows replicas to truncate any

prefix of the stable part of the write-log whenever they
desire or need to do so. The implication of truncating the
write-log is that on occasion a replica’s write-log may not
hold enough writes to allow incremental reconciliation
with another replica. That is, the sending server may have
truncated writes from its write-log that are yet unknown to
the receiver. This can occur, for example, when the
sending server has received and later truncated committed
writes that have not reached the receiving replica because
the receiving replica has been disconnected for a long
time. The protocol needs to detect and handle this
possibility.

To test whether a server is missing writes needed for anti-
entropy, each server maintains another version vector, S.O,
that characterizes the omitted prefix of the server’s write-
log; a commit sequence number is also maintained for the
omitted part of the log. A server can easily detect whether
it is missing writes needed to execute anti-entropy with
another server if its omitted sequence number, S.OSN, is
larger than the other server’s commit sequence number,
R.CSN. If so, there exist committed writes that the sending
server truncated from its log, and that the receiver has not
yet received. Under this circumstance, if the two servers
still wish to reconcile, a full database transfer has to occur.
That is, the receiving replica must receive a copy of the
sender’s database that includes all writes characterized by
the omitted vector. By sending this database the sender

anti-entropy(S,R) {
Get R.V and R.CSN from receiving server R
# first send all the committed writes that R does not know about
IF R.CSN < S.CSN THEN

w = first committed write that R does not know about
WHILE (w) DO

IF w.accept-stamp <= R.V(w.server-id) THEN
# R has the write, but does not know it is committed
SendCommitNotification(R, w.accept-stamp, w.server-id, w.CSN)

ELSE
SendWrite(R, w)

END
w = next committed write in S.write-log

END
END
w = first tentative write
# now send all the tentative writes
WHILE (w) DO

IF R.V(w.server-id) < w.accept-stamp THEN
SendWrite(R, w)

w = next write in S.write-log
END

}

Figure 2. Anti-entropy with support for committed writes (run at server S to update R)
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makes sure that the receiver knows of all the writes needed
to proceed with the regular, more incremental part of the
algorithm.

Figure 3 presents the anti-entropy algorithm with support
for write-log truncation. The protocol starts by checking if
the sender has truncated any needed writes from its write-
log. If it has all the entries necessary to only send writes or
commit notifications, the algorithm continues just as
described earlier. However, if there are missing writes, it
sends the contents of the full database to the receiving
server in addition to the version vector and the commit-
stamp that characterize the database being sent. Once the
receiving server receives the database and the
corresponding new omitted vector and sequence number, it
removes all writes from its write-log that are covered by
the new omitted vector, but more importantly, keeps all the
writes not covered by this vector, since these may be
unknown to the sender. After the database transfer, the
algorithm transitions back to incrementally sending the
remaining commit notifications and writes not yet known
to the receiving replica.

A couple of characteristics of this algorithm should be
pointed out. First, sending the complete database during

reconciliation may require much more network bandwidth
than the incremental, per write, part of the algorithm.
Second, the database transfer is not incremental; the
receiving server must obtain the full database and the
corresponding version vector and commit sequence
number for reconciliation to succeed.

3.4. Storage and Networking Resource
Tradeoff

Truncating a server’s write-log trades off potentially
increased usage of network resources with increased
storage requirements by one server to bring another server
up-to-date. A server either retains sufficient writes to
update other servers incrementally, or truncates writes
aggressively, which may cause occasional full database
transfers. Avoiding a full database transfer is important if
servers are synchronizing through low-bandwidth or costly
networks and the database is large. Thus, the challenge is
to reduce the server’s storage resources occupied by the
write-log while keeping the chance of having to perform a
full database transfer low.

Figure 3.  Anti-entropy with support for write-log truncation (run at server S to update server R)

anti-entropy(S,R) {
Request R.V and R.CSN from receiving server R
#check if R’s write-log does not include all the necessary writes to only send writes or
# commit notifications
IF (S.OSN > R.CSN) THEN

# Execute a full database transfer
Roll back S’s database to the state corresponding to S.O
SendDatabase(R, S.DB)
SendVector(R, S.O)# this will be R’s new R.O vector
SendCSN(R, S.OSN)# R’s new R.OSN will now be S.OSN

END
# now same algorithm as in Figure 2, send anything that R does not yet know about
IF R.CSN < S.CSN THEN

w = first committed write that R does not yet know about
WHILE (w) DO

IF w.accept-stamp <= R.V(w.server-id) THEN
SendCommitNotification(R, w.accept-stamp, w.server-id, w.CSN)

ELSE
SendWrite(R, w)

END
w = next committed write in S.write-log

END
END
w = first tentative write in S.write-log
WHILE (w) DO

IF R.V(w.server-id) < w.accept-stamp THEN
SendWrite(R, w)

w = next write in S.write-log
END

}
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The choice of when to truncate the write-log is left to
each server’s discretion. One potentially interesting policy
would be for the server to maintain running estimates of
the rate at which writes are committed and of the rate at
which writes propagate through the system, and to use
these estimates to establish when and how much of the
write-log to truncate. Another, much simpler, policy is to
truncate the write-log when free disk-space at the server
falls below a certain threshold. Another, more
conservative, but potentially more accurate, approach
would be to maintain an estimate of the maximum commit
sequence number known to all servers.

3.5. Rolling Back the Write-log
The write-log of a server needs to be rolled back, and the

effect of the writes undone from the database, in two
different situations during anti-entropy: a sender needs to
rollback its write-log if a full-database transfer is required,
while a receiver has to roll its log back to the position of
the earliest write it receives. Rollbacks at the sender’s side
should be rare, since we expect full database transfers to be
rare.

On the receiver’s side, the write-log is rolled back at
most once per anti-entropy session. Two optimizations can
further reduce the overhead of rollback operations. First, if
the replica is receiving writes from more than one replica
at a time, that is, the server is involved in multiple anti-
entropy sessions, the write-log only needs to be rolled back
once to the insertion point of the earliest write being
received. Second, the receiving server does not need to
redo the rolled-back writes until the next read from an
application. Hence, there is a tradeoff between lowering
the cost of near consecutive anti-entropy sessions and the
latency of the next read from a client. A replica could
therefore roll its write-log forward, that is, redo the rolled-
back writes, when a certain time threshold has passed since
an anti-entropy session. Such a threshold can be based on
the frequency of read operations.

4. Anti-entropy Protocol Extensions
So far, the paper has presented a reconciliation protocol

that supports different networking environments and
reconciliation policies, is incremental, and allows servers
to manage the storage resources and performance of their
write-logs to their best convenience. As mentioned earlier,
the simple anti-entropy design also enables additional
protocol extensions: server reconciliation using
transportable media, support for session guarantees and
eventual consistency, and light-weight mechanisms to
manage server version vectors when replicas can be
created or retired at any time. These features are enabled
by the three basic anti-entropy design choices, pair-wise
communication, exchange of writes and write propagation

according to specific write orders. As described in this
section, they also work well with the changes made to the
algorithm for more effective storage management.

4.1. Anti-entropy through Transportable
Media

In addition to supporting varying networking
environments, the anti-entropy protocol easily extends to
using transportable media, like floppy disks, PCMCIA
storage cards or even PDAs, instead of an actual network
connection.

Figure 4 presents an off-line anti-entropy algorithm that
outputs information about a server’s write-log and
database to a file. The main difference between this
algorithm and the one discussed in section 3 is that instead
of sending the data over a network connection, the updates
are stored into a file. This file is later used by another
server to incorporate the new updates into its write-log.

The off-line algorithm has additional features not present
in the on-line version. First, it takes two parameters, a
commit sequence number and a version vector; these
parameters define the minimum state required by a
potential receiver of the file. Any server whose commit
sequence number is at least as large as the CSN parameter
and whose version vector dominates the version vector
parameter can use the file to update its write-log. Second,
the algorithm writes out the commit sequence number and
version vector parameters to allow any server that is
presented with the file to determine whether it meets the
minimal state requirements to use the file. Finally, the
algorithm also writes out the sender’s commit sequence
number, S.CSN, and the full version vector, S.V. By doing
so, it enables receiving servers to quickly determine
whether the file holds anything new.

The algorithm can be modified to test the space
remaining on the auxiliary storage device each time new
data is written. When the device fills up the current file is
terminated by writing the CSN and V version vector
corresponding to the last write included in the file. Then, a
new file-anti-entropy session can be started with the
closing parameters of the previous session. Thereby sets of
devices with files that incrementally update other servers
can be generated, a feature that is useful if resource-limited
auxiliary devices like floppy disks are used for off-line
reconciliation.

4.2. Session Guarantees and Eventual Consis-
tency

In addition to the partial propagation order required by
the prefix property, Bayou has two additional ordering
requirements: (1) a causal order to provide session
guarantees to applications and (2) a total order to ensure
eventual consistency of all replicas. This subsection shows
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how both of these stronger write orders are easily
supported by the anti-entropy protocol; in fact, no changes
need to be made to any of the algorithms in Figures 1-4.

Bayou provides applications withsession guarantees to
reduce client-observed inconsistencies when accessing
different servers. The description of session guarantees has
been presented elsewhere [19]. However, with respect to
anti-entropy, the important aspect of session guarantees is
that their implementation requires writes to be causally
ordered. The causal order is a refinement of the accept-
order, calledcausal-accept-order, and specifies thatany
write A precedes another write B if and only if, at the time
write B was accepted by some server from a client, write A
was already known to that server. The causal-accept-order
is established through the accept-stamps assigned to writes
when they are first accepted by a server. To this end, each
server maintains a logical clock [13]. This logical clock
advances both when new writes are accepted by the server
from clients, or when writes with higher accept-stamps are
received through anti-entropy. Thus, a write accepted by

the server will always get a higher accept-stamp than all
other writes known to that server, and through that get
ordered after them. Because the ordering constraints of the
casual-accept-order are stronger and cover those defined
by the regular accept-order, the prefix property continues
to hold; furthermore, propagating writes in the causal-
accept-order is sufficient for the order to be applied at all
servers. The anti-entropy protocol thus supports the causal
ordering needed to implement Bayou’s session guarantees
without changes.

In general, without making assumptions about the
commutativity of writes, a total write orderis necessary to
ensure that replicas holding the same set of writes also
hold the same database contents. The stable-order
introduced in section 3.1 provides eventual consistency of
stable writes. However, we deem eventual consistency to
be an important property of weakly consistent storage
systems, which should be achieved even for non-stable
writes. The accept-order can be easily converted into a
total order by using the identification of the server that

file-anti-entropy(fileID, CSN, V) {
OutputCSN(fileID, CSN);
OutputVector(fileID,V);
IF (S.OSN > CSN) THEN

# Execute a full database transfer
Roll back S’s database to the state corresponding to S.O
OutputDatabase(fileID, S.DB)
OutputVector(fileID, S.O)# this will be the receiver’s new R.O vector
OutputCSN(fileID, S.OSN)# the receiver’s new R.OSN will now be S.OSN
CSN = S.OSN;# CSN now points to S.OSN, which will be the receiver’s new CSN at this point

END
# write anything that is not covered by CSN and V
IF CSN < S.CSN THEN

w = first write following the write with commit sequence number = CSN
WHILE (w) DO

IF w.accept-stamp <=V(w.server-id) THEN
OutputCommitNotification(fileID, w.accept-stamp, w.server-id, w.CSN)

ELSE
OutputWrite(fileID, w)

END
w = next committed write in S.write-log

END
END
w = first tentative write in S.write-log
WHILE (w) DO

IF V(w.server-id) < w.accept-stamp THEN
OutputWrite(fileID, w)

w = next write in S.write-log
END
OutputCSN(fileID,S.CSN);
OutputVector(fileID,S.V);

}

Figure 4. Off-line anti-entr opy through transportable media (from S to a file)
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accepted the write: accept-stamps are used for the causal-
accept-order described above and server identifiers are
used to break ordering ties between writes with equal
accept-stamps. To ensure eventual consistency, writes are
propagated between servers and stored in a server's write-
log according to the total order defined by the accept-
stamp and server-id tuple. The stable-order of section 3.1
can also be converted into a total order. To convert the
stable-order into a total order three factors are used,
namely <CSN, accept-stamp, server-id>, with the commit
sequence number being the most significant factor, and the
sever-id again only used to break ties among accept-
stamps of non-stable writes.

The ordering imposed on the propagation and execution
of writes plays two different roles: (1) ensure the prefix
property that enables the version vector representation of a
replica’s state, and (2) provide applications with
guarantees on the “quality” of the data held by a replica.
The ordering extensions discussed in this subsection,
causal and total, address only the second role.
Furthermore, by being consistent with the ordering
requirements for the prefix property, no changes were
needed to accommodate these extensions in the design of
the anti-entropy algorithm itself. In fact, the anti-entropy
algorithms can accommodate any order that provides the
closure properties required by the prefix property.

4.3. Light-weight Server Creation and Retire-
ment

In most systems, the creation of a data replica is a heavy
weight operation. It normally requires the intervention of
system administrators or the interaction with specific
servers. In Oracle, for example, master replicas can only
be created at the master definition replica, and all existing
masters must quiesce during the new master’s creation;
snapshot replicas can only be created at master replicas
[16]. Coda requires that the replication factor and the
locations of servers be specified at volume creation time;
although the system supports later addition of replicas, the
implementation is based on the assumption that it will not
be a frequent operation [18]. Mobile caches in Coda can
only be loaded from replica servers and not from other
mobile caches. Golding’s mechanisms require that K
servers be available for server creation [4], so that K-1 of
these servers may fail and at least one server will include
the newly created server in its view of what replicas exist.

Lighter weight mechanisms for server creation and
retirement enable more flexible usage scenarios. For
example, when two colleagues meet on a business trip, one
can get a replica of the budget plan from the other
colleague and immediately start receiving all the updates
made throughout the budgeting process. The user does not
have to wait for a connection with either a master server or
a quorum of replica servers. Lotus Notes has identified the

importance of this feature and advertises it as one of the
key differentiators of the system [10].

In Bayou new servers can be created, and similarly
retired, by communicating with any available server. Anti-
entropy can easily support these operations if the version
vectors are updated to include or exclude the new or
retired servers. Dynamic management of the version
vectors needs a mechanism to (1) uniquely assign
identifiers to newly created servers, and (2) allow any
server to correctly determine whether a server has been
newly created or retired. The prefix property and the
causal-accept-order requirements placed on the
propagation of Bayou writes are used to provide these
mechanisms. Write accept-stamps are used to assign server
identifiers that exactly determine the location and time of
each server’s creation. These server identifiers can then be
compared with the version vectors stored at each replica,
to determine whether a server is new or has been retired.
The next two subsections describe the creation and
retirement of servers in more detail.

 Creation and Retirement Writes
A Bayou serverSi creates itself by sending acreation

write to another serverSk. Any server for the database can
be used. The creation write is handled bySk just as a write
from a client. The write is inserted inSk’s write log, and is
identified with the<infinity, Tk,i, Sk> three-tuple, where
Tk,i is the accept-stamp assigned bySk.

The creation write serves two main purposes. First, as it
propagates via anti-entropy, it informs other servers of the
existence ofSi. The effect of the execution of the write is
that an entry forSi is added to the server’s version vectors
that cover this write. Second, it providesSi with a server-
id that is globally unique and clearly identifies the time of
its creation. Specifically,<Tk,i, Sk> becomesSi’s server-
id.

The new server also uses the value of (Tk,i + 1) to
initialize its own accept-stamp counter. This initialization
is necessary so all writes accepted by the new server
follow its creation write in the causal-accept-order.

Note that the recursive nature of the server identifiers
affects the size of the version vectors. At one end, if all
servers are created from the first replica for the database,
all server identifiers will contain only one level of
recursion and thus be short. On the other hand, if replicas
are created linearly, one from the next, server identifiers
will be increasingly longer, and the version vectors for
such a database will therefore also be much larger.

When a server is going to cease being a server for a
database, it does so by issuing aretirement write to itself.
Again, the write is stamped just like any other Bayou
write. Its meaning is that the server is going out of service.
At this point, the server will no longer accept new writes
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from clients. However, the server must remain alive until it
performs anti-entropy with at least one other server so that
all its writes, including its retirement write, get propagated
to other servers.

When a server receives a retirement write, it removes the
corresponding entry from all the server’s version vectors
that cover this write. The prefix property ensures that a
server Sk will have received and processed all writes
accepted bySi before removingSi from its version vector.

 Logically Complete Version Vectors
One thorny problem remains, however: when the

protocol is executed at the sending server, it needs to
decide if a write is new to the receiving server by just
comparing the write’s accept-stamp with the receiving
server’s version vector; specifically, the problem occurs
when the receiving server’s version vector is missing an
entry. The sending server has to correctly determine
whether the receiver has eliminated the entry because the
server corresponding to that entry has retired, or whether
the receiver has never heard of the server associated with
the missing entry. What writes to propagate critically
depends on the outcome of this decision.

More precisely, a serverSi may be absent from another
server’s version vector for two reasons: either the server
never heard aboutSi’s creation, or it knows thatSi was
created and subsequently destroyed. Fortunately, the
recursive nature of server identifiers in Bayou allows any
server to determine which case holds. Consider the
scenario in whichR sendsS its version vectors during anti-
entropy, andR is missing an entry forSi = <Tk,i, Sk>.
There are two possible cases:

If R.V(Sk) ≥ Tk,i, then server R has seenSi’s creation
write; in this case, the absence ofSi from R.V means
that R has also seenSi’s retirement.S can safely
assumeR knows that server Si is defunct, and does
not need to send any new writes accepted bySi to R.

If R.V(Sk) < Tk,i, then server R has not yet seenSi’s
creation write, and thus cannot have seen the retire-
ment either. S therefore needs to sendR all the writes
it knows that have been accepted bySi.

Note that this scenario assumes thatR.V includes an
entry for Sk. Since multiple servers may retire or be
created around the same time,R’s version vectormay be
missing entries for bothSi and Sk in the example used
above. Fortunately, the presence of an entry forSk is not
essential to identify retired servers. The solution is based
on the recursive nature of the server identifiers. Imagine a
CompleteV vector that extends the information stored in
the V vector to include timestamp entries for all possible
servers. A recursive function can compute entries for this
extended vector:

CompleteV(Si = <Tk,i, Sk>) =
V(Si) if explicitly available
plus infinity if Si = 0, the first server
plus infinity if CompleteV(Sk) ≥ Tk,i
minus infinity if CompleteV(Sk) < Tk,i

A value of minus infinity indicates that the server has not
yet seenSi’s creation write, and plus infinity indicates that
the server has seen bothSi’s creation and retirement
writes. A server can use theCompleteV function as
defined above to always correctly determine which writes
to send during anti-entropy.

The dynamic management of version vectors allows a
server to create itself by contacting one server for the
database. After issuing its creation write, the newly created
server needs to perform anti-entropy with the server that
just created it. Through this anti-entropy session the newly
created replica will itself hold its creation write. Note that
the new server’s first anti-entropy session is likely to
include a full database transfer. After the anti-entropy
session between the new server and its creating replica, the
creation of a replica can tolerate any other failure, because,
by virtue of its server-id and version-vector, the new server
holds all the information it needs to positively identify its
creation.

5. Discussion
This paper has presented the design of the anti-entropy

protocol in a series of steps, each focusing on the features
enabled by refinements or extensions of the basic three
anti-entropy building blocks: pair-wise communication,
exchange of operations, and the ordered propagation of
operations. The presentation has been framed in the
context of Bayou and its requirements. This section
discusses the anti-entropy protocol independently of the
Bayou system. It starts with a deconstruction of the
protocol, pointing out which of the protocol’s properties
enable each of anti-entropy’s features and how these
features can be provided in systems that were designed
with some, but not all, of the same components. The
section continues by highlighting some of the drawbacks
of the design presented in Sections 2-4. Finally, the
discussion focuses on some of the policy choices and
tradeoffs enabled by the anti-entropy design and the
security issues raised by the use of a peer-to-peer model of
update propagation.

5.1. Implications for Other Systems
Table 1 presents the dependencies between features of

the anti-entropy reconciliation protocol and its design
components. Marked entries in the table indicate a
dependency between a feature and a design choice. The
high-level message of this table is that each of the
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protocol’s features depends only on a few design choices,
and that many features can be provided independently.

The unidirectional peer-to-peer reconciliation model
supports reconciliation over arbitrary communication
topologies and a wide variety of policy choices of when
and with which replica to reconcile. Both of these features
co-exist independently of the protocol’s mechanisms to
establish what data to reconcile, the formats used for
update propagation, and the order in which data propagates
in the system.

The protocol’s operation over low-bandwidth networks
is enabled through reconciliation based on the propagation
of update operations. Low-bandwidth networks can be
similarly accommodated by protocols that exchange deltas
or differences in the replicas’ values. Other systems can
reconcile over low-bandwidth networks using either
update or delta-based techniques, independently of
whether they limit the communication patterns between
replicas or whether they impose particular order on the
propagation of the updates or deltas.

Update propagation between replicas can make
incremental progress if an order can be established over
the data to be reconciled. The minimum requirement is a
partial order over the updates introduced throughout the
system. The peer-to-peer model facilitates the incremental
progress of the reconciliation protocol because
determining which data needs to be reconciled depends
only on the state of two replicas. The incremental nature of
the protocol is also facilitated by the propagation of

operations or deltas because the unit of propagation is
small. Again, incremental progress can be provided
independently of the mechanisms provided by the system
for other features like data consistency and replica set
management.

Anti-entropy’s mechanism to cope with the aggressive
reclamation of storage resources depends on the
stabilization of some prefix of the operations-log. Any
mechanism to stabilize the order of operations and to
propagate this information back to the replicas is sufficient
for this purpose.

Reconciliation using floppy disks or other transportable
media can be supported by systems that structure the
reconciliation process as a one-way protocol and that
provide an ordering over the data to be reconciled. In fact,
systems that provide incremental reconciliation protocols
are likely to be well suited to also provide file based
reconciliation mechanisms.

Light-weight creation and retirement of servers, the last
feature introduced for the anti-entropy protocol, depends
only on the use of the causal-accept-order defined over
updates generated in the system. A system can adopt this
technique as long as its reconciliation mechanisms enforce
such an ordering during propagation so that version
vectors can be used for state representation and operations
have a causal relationship. Also, an equivalent of the
creation and retirement writes must be provided. However,
it is not necessary for these systems to base their
reconciliation protocol on operation exchanges per se.

* Small marks indicate that the feature is facilitated by the design choice, but does not depend on it.
** Eventual consistency can be supported with the incremental protocol by either establishing a total order on all

updates, making operations commutative, or by enforcing a total order on the propagation of updates that are part
of the stable prefix.

Feature      Design Choices One-way
Peer-to-Peer

Operation-
based

Partial
Propagation

 Order

Causal
Propagation

 Order

Stable
Log Prefix

Arbitrary Communication Topologies ◆

Arbitrary Policy Choices ◆

Low-bandwidth Networks ◆

Incremental Progress ◆
*

◆ ◆

Eventual Consistency ◆**

Aggressive Storage Management ◆

Use of Transportable Media ◆ ◆

Light-weight Dynamic Replica Sets ◆ ◆ ◆

Per Update Conflict Management ◆

Session Guarantees ◆

Table 1: Features enabled by specific anti-entropy design components
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In summary, one of the strengths of the anti-entropy
protocol design is that many of its features can be
reproduced by other systems, even though they may
diverge in the design choices for other functionalities.

5.2. Disadvantages
The variety of features enabled by the anti-entropy

protocol result from each replica’s ability to reconcile with
any other replica in the system, and to do so by only
consulting each other’s version vectors and the sending
server’s write-log. The drawbacks of the anti-entropy
design are associated exactly with the potential sizes of
these two data structures.

The version vectors used for the anti-entropy protocol
need an entry for each replica in the system. The size of
the vectors thus grows in proportion to the number of
replicas and the complexity of the replica creation pattern.
When the number of replicas of a database is large
compared to the update activity in the system, the cost of
exchanging version vectors during an anti-entropy session
can become a dominating performance factor. However, as
shown in section 6, when servers get created in well-
behaved patterns, the version vector size does not have a
significant impact on anti-entropy performance for
replication factors of a few thousand.

To satisfy Bayou’s propagation order requirements, each
server must retain all tentative writes in its write-log. Log
compaction, such as the removal of entries that first insert
and later delete an object from the database, cannot be
used. Each server therefore has to keep all the writes it has
received until it is notified of the writes’ commitment.
Hence, if the update activity of the database is large while
the commit rate is low, the size of a server’s write-log can
grow large.

5.3. Anti-entropy Policies
Four types of policies are enabled by the mechanisms of

the anti-entropy protocol: policies for when to reconcile,
policies for choosing with which replicas to reconcile,
policies for deciding how aggressively to truncate the
write-log, and policies for selecting a server from which to
create a new replica. The different policy choices affect
not only the performance and cost of the anti-entropy
process but also how quickly updates propagate to other
replicas, how up-to-date a replica is, how large the write-
log gets, and how quickly writes stabilize.

Potential policies for when to reconcile a replica include:
periodic reconciliation, manually triggered reconciliation,
and system triggered reconciliation. In other words, a
replica can communicate with other replicas at recurring
intervals, users can explicitly activate the reconciliation
process, and anti-entropy can be initiated by servers when
certain system characteristics are met. For example, a
server may initiate anti-entropy when a network link

becomes available, when it detects the bandwidth is above
some threshold, when the CPU load is down, or when its
write-log is growing large and committing a series of
writes becomes necessary. In general, increasing the
frequency of anti-entropy among servers increases the rate
of update propagation, the degree to which servers are up-
to-date, and the rate at which writes stabilize but at the
expense of greater bandwidth consumption due to protocol
overheads.

Similarly, policies for choosing with whom to perform
anti-entropy can depend on multiple factors: which other
replicas are reachable, the network characteristics of the
connection to these replicas, the up-to-dateness of the
replicas, whether the replicas have truncated too many
entries from their logs, and which replica is serving as the
primary. Policy choices for anti-entropy partners, like
those for when to reconcile, generally trade off bandwidth
usage against propagation rates. Previous work on
analyzing epidemic-style algorithms, like those used in
Bayou, has shown that a judicious choice of anti-entropy
partners can dramatically reduce the total traffic required
to propagate updates, while yielding only modest increases
in the propagation delay [3]. The key is to favor nearby
servers and to avoid overloading slow network links.
Golding also explored biasing the selection process to
favor nearby anti-entropy partners [4].

As discussed in section 3.4, policies to decide how
aggressively to truncate the write-log trade off storage and
networking resources needed during anti-entropy. Very
aggressive write-log truncation may cause lengthy anti-
entropy sessions between some servers because of the need
to do full database transfers. Observe that write-log
truncation policies can be associated with groups of
replicas. Within a group, a few replicas may be designated
as the servers of choice with whom to reconcile; these
replicas could retain more writes in their write-logs to
expedite anti-entropy with replicas inside and outside of
the group, allowing other replicas in the group to reclaim
storage more aggressively.

Finally, policies used to select a server from which to
create a new replica can affect the performance of the anti-
entropy protocol as shown in section 6. When several
servers are available to create a new replica, their
respective server identifier lengths should be considered in
addition to the other characteristics of these replicas, like
up-to-dateness, connection bandwidth, and completeness
of their write-logs.

5.4. Security
In addition to the policies discussed thus far, the level of

security enforced during the reconciliation process can
significantly affect its performance. The peer-to-peer
model of the anti-entropy design has a variety of security
implications. Replicas may have different levels of trust in
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other replicas and in clients. The trust relationship may
even change depending on the location of a replica, for
example, if inside or outside a firewall. The security model
may not want to depend on third party authorization
services to avoid additional networking requirements. If
operations need to be authorized at all servers, security
meta-data, like certificates, may need to propagate with the
operations. The higher the level of security that is required,
the more security related operations need to be executed
during the reconciliation process.

The Bayou implementation relies on digital certificates
and a hierarchy of trust delegations to implement security.
Before untrusted Bayou replicas reconcile, they
authenticate each other. In addition, writes include
certificates to authorize database accesses for a final time
when committed at the primary. Each of these security
measures add to the reconciliation times of fully secured
Bayou databases.

6. Performance Evaluation
The implementation of the anti-entropy algorithms in

Bayou consists of 2846 lines of POSIX-compliant C code.
The implementation relies on an existing write-log
implementation (1730 lines), a database manager (14768
lines), and utility routines to manipulate version vectors,
server identifiers, and write stamps (1081 lines). The
implementation also relies on a runtime environment with
support for user-level threads, garbage collection, and an
RPC package. In this section we present an evaluation of
the performance of this implementation, which runs
unchanged on both SunOS 4.1.3 and Linux 2.0 platforms.

In summary, the analysis and measurements in this
section show that Bayou’s anti-entropy protocol performs
as expected:

• An anti-entropy session propagates only writes
unknown to the receiver, and hence performs as a linear
function of the number of such writes and the available
network bandwidth;

• While traversing its write-log, the sender spends only a
minimal amount of time deciding which writes to
propagate;

• The bulk of the anti-entropy algorithm execution time is
spent on the network and applying the newly received
writes to the write-log and database of the receiver;

• Version vector storage requirements grow between
linearly and quadratically with the number of replicas,
depending on the pattern in which servers are created
from others;

• The simplest implementation of checking whether a
write is covered by a version vector takes time between
linear and cubic to the number of servers, depending on
how the servers are created.

6.1. Experimental Setup
The measurements were taken for BXMH, a version of

the popular EXMH e-mail application that uses Bayou
instead of a file system to store mail messages. Each
experiment measures the time to run the anti-entropy
protocol between two replicas of the mail database. In all
experiments, only committed writes are propagated, and
each write inserts a new e-mail message into the database.
In addition, for each anti-entropy session the size of the
propagated writes, or e-mail messages, is held constant.
Results were collected for two message sizes: 3000 byte
messages and 100 byte messages; the message sizes
includes both the headers and the message bodies. The
large size roughly corresponds to the median size of mail
messages. While the small messages were artificially
constructed, the large messages correspond to real
messages received by one of the authors, either truncated
or extended to be 3000 bytes long.

Two platforms were used in the experiments:
SPARCstation-10s running SunOS 4.1.3 (labeled SS in the
graphs), and 486-based laptops running Linux 2.0 (labeled
486); all machines are clocked at 50MHz. The file system
used to store the replica’s write-log on the SPARCstations
is NFS, whereas the laptops use UFS. Two types of
network connections link the replicas in these experiments:
a one hop, 10 Mbps ethernet connection, and a PPP (point-
to-point protocol) connection over a 9.6 Kbps modem and
then two ethernet hops to the second server within a
firewall. In practice, the achievable bandwidth over the
modem reaches up to 26.2 Kbps due to compression.

Each measurement was taken at least five times, for the
faster experiments sometimes up to ten times. All figures
present the averages over all runs. They include error bars
if these do not clutter the presentation, otherwise standard
deviations are reported in the captions.

6.2. Anti-entropy Execution Times
Figure 5 demonstrates that the execution time of the anti-

entropy protocol is a linear function of the number of new
writes being propagated. The slope of the function depends
on the size of the messages being exchanged and the
network bandwidth available for reconciliation.

The range of performance observed for anti-entropy of
3000-byte e-mail message writes starts with two servers
running on the SPARCstations communicating over the
ethernet, which requires 2.26 seconds to propagate the first
write and a little under 5 seconds for each additional 100.
At the other extreme, for the laptop and modem, it takes
7.16 seconds for the first write and about 150 seconds for
each additional 100 writes.

These numbers have significant room for improvement
since each Bayou write that adds an e-mail message to the
BXMH database currently has two substantial data
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overheads: 520 bytes for the public key of the principal
that is updating the database, which is included for access
control purposes; and 1316 bytes of update schema
information and data cell padding. These update schema
and cell padding overheads are unnecessarily large; 40%
of the overhead corresponds to the ASCII strings of the
column names of each field being updated, while the
remaining fraction of the 1316 bytes are zero filled to pad
data cells because SunRPC represents everything by an
integral number of 4-byte words. As shown below, more
sophisticated representations for update schema and cell
padding would substantially improve the performance of
anti-entropy over the modem. Similarly, systems with
different access control policies or mechanisms could
obviate the need to transmit public keys with every write
and, with that, also reduce the overall communication
overhead.

To further analyze the performance of the algorithm, we
broke down the execution time of anti-entropy sessions
that propagate 100 writes between two replicas. Each of
the bars in Figure 6 corresponds to a different experimental
configuration. The labels indicate on which platform the
receiving replica ran, what network connection was used,
and which size messages were propagated. In all cases the
sending replica ran on a SPARCstation, which does not
affect the performance of anti-entropy since, as the cost
breakdowns show, the overheads at the sending replica are
minimal.

As Figure 6 shows, the factors that contribute the most to
the performance of the anti-entropy interactions are:

• Network transfer: the most significant overhead of the
anti-entropy sessions corresponds to the actual
transmission of the writes. This phase includes the
marshalling and unmarshalling of the writes being

Figure 5. Anti-entropy execution as a function of the number of writes propagated
(each write corresponds to one mail message)
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propagated, as well as the time on the network itself. In
the graph, the network transfer time is subdivided into
four categories: time to marshall and unmarshall the
RPC data, time related to transfer actual message
information, time to transmit each write’s public key
and the overhead to transmit the update schema
information and data padding for each write. As
mentioned earlier, systems with different access control
mechanisms and more efficient schema and padding
implementations could eliminate a substantial part of
the communication overhead, particularly in the modem
cases.
The figure also shows that the bandwidth over the
ethernet between the SPARCstations is about double
that achieved between the laptop and the
SPARCStation; the bandwidth in the former case varied
between 4.6 and 5.8Mbps, while the laptop’s ethernet
connection only achieved 2.4-3.1Mbps. The observed
bandwidth over the modem varied between 23.3 and
26.2Kbps for the communication of the two sets of 100
writes.

• Anti-entropy setup: during this step the sender locates
other replicas using the name service, sets up the RPC
handle to communicate with the receiving replica, and
performs the challenge response protocol that is used in
Bayou to mutually authenticate replicas before they
engage in the actual propagation of writes. The last
response of the authentication protocol also includes the
version vector state information from the receiving
replica. This setup time accounts for most of the time it
takes to transmit one write. For 3000 byte messages the
setup time in the ethernet case is 2.08 seconds and in the
modem case 4.63 seconds, which corresponds to 65-
88% of the first write propagation times reported earlier.

• Applying the newly received writes at the receiver:
the last observable overhead in Figure 6 is due to the
processing of the received writes at the receiving
replica, both incorporating the writes into the write-log
and applying them to the database.

Since the network transfer time dwarfs most of the other
execution time components of anti-entropy, Figure 7
shows the smaller overheads of the algorithm; they
exclude the network transfer time and the anti-entropy
setup time. We chose not to include the setup time because
it involves operations such as authentication, which other
implementations may choose to exclude, and RPC
initialization, which can be implemented differently by
other systems. These smaller components also correspond
to the network independent portion of the anti-entropy
algorithm.

Of these network independent overheads, the largest
component corresponds to inserting all newly received
writes in the receiver’s write-log. Figure 7 breaks that
operation down into four subcomponents: canonicalizing
of the new writes for string sharing purposes, marshalling
the new writes to serially write the in-memory data
structures out to disk, the actual disk I/O time, and the
transactional overhead to manipulate the write-log.
Bayou’s current implementation is based on an in-memory
database and string canonicalization is necessary to reduce
memory overheads, but may not be needed in other
systems. The marshalling implementation is not optimized
either. We believe that the canonicalizing and marshalling
steps have ample opportunity for performance
improvements.

The second largest cost component shown in Figure 7
corresponds to applying the 100 newly received writes to
the receiver’s database. This time ranges between 335
msec. on the SPARCStation and 959 msec. on the laptop.
Database performance will necessarily vary depending of
the database manager used in the system’s implementation.
These numbers should therefore only be considered as one
performance example.

Finally, Figure 7 shows that the time spent in the
algorithm to determine which writes are new to the
receiving replica is negligible, taking as little as 11 msec.
and only a maximum of 42 msec. in these experiments, in
which all writes are unknown to the receiver. Separately
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we also measured the time for a sending server to traverse
100 entries of its write-log when all of these writes are
already known to the receiver. For all the server pairs,
network combinations, and write sizes reported, this time
is less than a tenth of a second.

6.3. Effect of Server Creation Patterns
As mentioned in section 4.3, the space required to

represent a version vector depends on the pattern of server
creations. To be concrete, the representation used “on the
wire” in our RPC protocol is the SunRPC representation of
a sequence of <server-id, accept-stamp> pairs. This
representation takes

bytes for a vector of N servers, where |Si| is 0 for the
initial server of a system and 1 + |Sk| when Si is created
from server Sk. Accept-stamps are 8 bytes long. In the
most storage efficient case, all servers are created from the
initial one, and the version vector representation requires
20N - 4 bytes, or 20 Kilobytes for 1000 servers. In the
least storage efficient case, servers are created in one long
chain, and the version vector representation requires 4N^2
+ 8N + 4 bytes, or 4 Megabytes for 1000 servers.

The time to test whether a given write is among those
represented by a version vector may, in the worst case,
grow cubically. This time analysis is based on a very
simple implementation that uses a list data structure for the
version vector representation. The three multiplicative
factors result from: (1) traversing the list representation of
the version vector, (2) comparing the server identifiers of
each entry in the list with the server-id of the write, and (3)
if an entry for a server is not present, recursively
calculating CompleteV. More sophisticated data
structures like hash tables with a one way hash function
could be used instead, making the time linear.

Figure 8.a shows that the execution time of anti-entropy
is a linear function of the number of servers in the system
for the least costly server creation pattern. It also shows

that 1000 servers can be supported easily. On the other
hand, as shown in Figure 8.b, execution times grow
quadratically in the most costly server creation pattern.
The cubic factor does not appear in Figure 8.b because no
servers had been retired from the system.

The measurements in Figure 8 correspond to the
propagation of 100, 3000-byte messages between
SPARCstations over the ethernet connection. The
measured execution times include both the writes’ accept
stamps to version vector comparisons and the marshalling
and network time for the initial back-flow of the receiver’s
version vector. In comparison, the numbers reported in
section 6.2 correspond to a system with three replicas.

If the size of version vectors causes performance
problems due to exceedingly long server-identifiers, the
lightweight server creation and retirement can be used to
institute practical policies to limit the number and lifetime
of servers whose creation was far removed from the initial
server. For example, a server can recreate itself with a
smaller identifier if it locates another server with a smaller
identifier than the one of the server’s original creator. This
process requires the issuance of a retirement write, a new
creation write, and anti-entropy with the new creator; it
can be optimized to reuse the server’s existing write-log
and database.

7. Related Work
A number of research and commercial systems have used

weak consistency replication and propagated updates
among replicas in a lazy fashion. Each of the individual
features of Bayou's anti-entropy protocol have almost
certainly appeared in previous systems in some form.
Interesting differences lie in the implementation details
about what information gets exchanged between replicas,
what data structures are used to keep track of other replicas
and the state of these replicas, what communication
patterns are allowed between replicas, and so on.
Unfortunately, detailed information about how other
systems reconcile their replicas is difficult to obtain,
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especially for commercial products. One contribution of
this paper is describing a reconciliation protocol in detail
along with the design decisions that went into it. In this
section, we discuss how other systems' protocols compare
to Bayou's based on the sketchy information available.

Grapevine, one of the earliest weakly replicated systems,
propagated updates via electronic mail [2]. Electronic mail
is not completely reliable, however, so the product version
of Grapevine, called Clearinghouse [15], added a
background anti-entropy process in addition to mail
delivery. It was later realized that epidemic style
algorithms, like Clearinghouse's anti-entropy, could be
used by themselves to fully propagate updates [3]. Pair-
wise reconciliation of replicas is currently used in several
systems besides Bayou, including Notes [10], Ficus [7],
and refdbms, which uses Golding’s timestamped anti-
entropy protocol [4].

Rather than a peer-to-peer model in which any replica
can contact any other replica to reconcile their data, some
systems organize replicas into a hierarchy where a replica
only exchanges updates with its parent or children.
Examples of this are the client-server reconciliation
protocols in file systems like Coda [11] and distributed
object systems like Rover [9], and also the primary-
secondary or master-snapshot protocols in database
management systems like Oracle [16] and Sybase [5]. Due
to their simplified communication patterns, these systems
can more easily maintain accurate information about the
state of the replica(s) with which they exchange updates.
However, update propagation is more affected by
communication outages.

In many systems using lazy replication, the information
exchanged between replicas is based on data objects with
associated update timestamps or version vectors. This is
true for Grapevine [2], Clearinghouse [15], Notes [10], and
Microsoft Access [8]. File systems like Coda [18] and
Ficus [7] exchange updated files between servers or
between clients and servers. The notion of reconciling logs
of update operations held at various replicas, as is done in
Bayou via the anti-entropy protocol, has been discussed for
some time in the literature [1, 17, 21] and is used in some
commercial database systems [5, 16]. Oracle7, for
instance, uses asynchronous RPCs to propagate
transactions between a master and its snapshots or other
masters [16]; it does not, however, allow these transaction
to propagate through intermediary servers. Rover also uses
operations as the unit of reconciliation by queuing RPC
invocations that are eventually applied to the master copy
of an object [9].

Systems that propagate updated data objects need an
additional mechanism to handle deleted objects. For
example, Clearinghouse servers maintained and exchanged
“death certificates” for deleted objects [3, 15]. Protocols
have been devised to decide when replicas can safely

discard deleted data [17]. When update operations rather
than data are used for reconciliation, deletions are handled
automatically as just another type of update operation, and
servers can immediately reclaim the space used by deleted
data items.

A goal in the design of Bayou's anti-entropy protocol
was to ensure that servers can make progress even if the
protocol is disrupted by the loss of a network connection.
That is, a server should be able to use and propagate to
other replicas any updates that it receives even if the
protocol does not complete successfully. Some systems
run their reconciliation process as an atomic transaction
and hence lose the incremental property. Coda has added a
trickle reintegration protocol for use by weakly-connected
clients; while this protocol is atomic, it includes the notion
of a chunk size that can be set to a small value to achieve
incremental reintegration [14]. Also note that systems
based on queued RPCs, such as Oracle, can make
incremental progress since each RPC is generally run as a
separate transaction [16].

Techniques for changing the set of replicas vary widely
among systems. In systems with a client-server or primary-
secondary relationship between replicas, new clients or
secondaries can generally be created by simply contacting
the primary site. In peer-to-peer systems, adding or
removing replicas often requires a system administrator
and reconciliation between replicas. Golding uses a group
membership protocol that requires a new replica to find
some number of sponsor replicas and a retiring replica to
wait until notice of its retirement reaches all other replicas
[4]. Notes [10] and Microsoft Access [8], as far as we can
tell, are like Bayou in that they allow replicas to be created
readily from any existing replica, though it does not appear
that the knowledge of new replicas is propagated
throughout the system as in Bayou. Bayou is the first
system we know about that employs version vectors to
characterize a replica's contents, allows any replica to
accept updates, and yet permits lightweight creation and
retirement of replicas.

8. Conclusions
The major contribution of this paper is in the detailed

presentation of Bayou’s protocol for lazily propagating
updates between its weakly consistent replicas along with
the rationale for each design decision and the features
enabled by it. The protocol is practical, implemented, and
quite simple. Three basic design decisions went into
Bayou’s anti-entropy protocol: the model of pair-wise
reconciliation between peer replicas, the exchange of write
operations stored in per-replica logs that are compactly
characterized using version vectors, and the propagation of
writes between replicas in an order that is closed with
respect to the writes’ accept, causal, or total order.
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Although none of these design decisions in isolation is
particularly novel, together they provide the flexibility
necessary to cope with the diversity of networking
environments in common use today, including unreliable
wireless networks, dial-up modems over telephone lines,
the global Internet, and even “sneakernet”. They permit
replicas to make incremental progress towards their
convergence in the face of involuntary disconnections
while giving replicas control over the pruning of their
individual write-logs. They also support Bayou’s style of
conflict resolution and its session guarantees.

Additionally, Bayou incorporates a new lightweight
mechanism for creating and retiring replicas that builds on
and is compatible with its anti-entropy protocol. Special
creation and retirement writes propagated via anti-entropy
and server identifiers built from a hierarchy of write-
stamps permit replicas to reconcile any differences that
may exist in their views of the current replica set.

Key to the flexibility of Bayou’s anti-entropy design is
the separation from the protocol itself of the policies for
choosing pairs of replicas to reconcile and at what times.
Optimal policies for choosing anti-entropy partners depend
on a number of complex factors such as the available
bandwidth between replicas and the cost, perhaps in real
money, of communication between them. Admittedly, the
current Bayou system uses the most simple policies
imaginable, like random selection. Exploring different
policies and their effect on the rate and cost of overall
system convergence, as well as on the total storage
requirements, remains an area for fertile research.
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