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Abstract

Bayou’s anti-entropy protocol for update propagation
between weakly consistent storage replicas is based o
pair-wise communication, the propagation of write
operations, and a set of ordering and closure constraints o
the propagation of the writes. The simplicity of the design °
makes the protocol very flexible, thereby providing
support for diverse networking environments and usage
scenarios. It accommodates a variety of policies for when
and where to propagate updates. It operates over diverse
network topologies, including low-bandwidth links. It is
incremental. It enables replica convergence, and updates
can be propagated using floppy disks and similar
transportable media. Moreover, the protocol handles
replica creation and retirement in a light-weight manner. «
Each of these features is enabled by only one or two of the
protocol's design choices, and can be independently
incorporated in other systems. This paper presents the anti-
entropy protocol in detail, describing the design decisions,
and resulting features.

1. Introduction

Weakly consistent replicated storage systems with an®
“update anywhere” model for data modifications require a
protocol for replicas to reconcile their state, that is, a
protocol to propagate the updates introduced at one replica
to all other replicas. A key advantage of weakly consistent
replication is that, by relaxing data consistency, the
protocol for data propagation can accommodate policy
choices forwhen to reconcilewith whom to reconcile, and
even what data to reconcile. In this paper we present
Bayou’s anti-entropy protocol for replica reconciliation.
The protocol, while simple in design, has several features
intended to support diverse network environments and,
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usage scenarios. The contribution of this paper is to
demonstrate how the anti-entropy design,
pairwise-communication between replicas and the ordered
exchange of update operations stored in per replica logs,
gnables this set of features and functionalities:

based on

Support for arbitrary communication topologies:

the protocol provides the mechanism to propagate
updates between any two replicas. In turn, the theory of
epidemics ensures that these updates transitively
propagate throughout the system [3].

Operation over low-bandwidth networks:

reconciliation is based on the exchange of update
operations instead of full database contents, and only
updates unknown to the receiving replica are propagated.

Incremental progress:

the protocol allows incremental progress even if
interrupted, for example, due to an involuntary network
disconnection.

Eventual consistency:
each update eventually reaches every replica, and
replicas holding the same updates have the same
database contents.

Efficient storage management:
the protocol allows replicas to discard logged updates to
reclaim storage resources used for reconciliation.

Propagation through transportable media:

one replica can send updates to another by storing the
updates on transportable media, like diskettes, without
ever having to establish a physical network connection.
Light-weight management of dynamic replica sets:

the protocol supports the creation and retirement of a
replica through communication with only one available
replica.

Arbitrary policy choices:

any policy choices for when to reconcile and with which
replicas to reconcile are supported by the anti-entropy
mechanism. The policy need only ensure that there be
an eventual communication path between any pair of
replicas.

Other weakly consistent replicated systems support

subsets of these functionalities. For example, Coda’s

reconciliation protocols allow server replicas to reconcile



with each other, and mobile replicas to reconcile with 2. Basic Anti-entropy

servers, but mobiles cannot reconcile amongst themselves

[11]. In Ficus, reconciliation can occur between any pair of The goal of anti-entropy is for two replicas to bring each
replicas, however server creation and retirement requires®ther up-to-date. In Bayou, the storage system at each
coordination among all replicas [7]. Oracle 7 has a two- replica, also called a server, consists of a ordered log of
level hierarchy of replicas: master replicas send their Updates, calledrites, and adatabase that results from the
transactions to all other masters, but cannot forwardin-order execution of these writes. A servewsite-log
transactions received from other masters: a Snapshog:ontains all writes that have been received by that Bayou
replica can only reconcile with its specific master, S€rver either from an application or from other servers.
independently of the availability of other masters [16]. Therefore, anti-entropy needs to enable two servers to
Grayet al. also proposed a two-tier replication model that, @gree on the set of writes stored in their logs.

in contrast to Oracle’s system, ensures convergence of the For the purpose of this paper, a Bayou write can be
replicas but does not allow reconciliation between mobile thought of as a procedure that generates a set of updates to
replicas [6]. Golding’s time-stamped anti-entropy protocol be applied at the database. Specifically, a Bayou write
[4] comes closest to Bayou’s. Many of the mechanisms inconsists of three components: a set of updates, a
his design are similar, however he suggests a heaviedependency check, and a merge procedure. The
weight mechanism to create replicas and a less aggressivdependency check and the merge procedure of a write let
approach for replicas to reclaim storage resources. each server that receives the write decide if there is a

The Bayou system places additional requirements on jtsconflict and, if so, how to resolve it [20].

anti-entropy protocol due to its support for conflict When a Bayou server first receives a write from a client
detection and resolution based on per-write dependency-application, the server assigns a monotonically increasing
checks and merge procedures [20] and for sessionaccept-stamp to the write. Accept-stamps can be time-
guarantees [19]. By presenting the protocol in detail, alongstamps or simple generation counters. As it propagates via
with the design decisions that went into it, this paper anti-entropy, each write carries its accept-stamp and the
shows how the protocol design supports both theseidentifier of the server that assigned the stamp. Accept-
requirements of the Bayou system, as well as the featurestamps define a total order over all writes accepted by a
listed above. server and a partial order, which we call doeept-order,

We believe that all of the features enabled by Bayou's OVer all writes in the system. Write A precedes write B in
anti-entropy protocol are important. First, because the accept-order when both were accepted by the same
applications and users have different requirements for datsServer and write A was accepted before write B. Servers
reconciliation, the protocol supports the replica’s ability to store writes in their write-logs in an order that is consistent
choose when to reconcile and with whom to reconcile. ForWith this accept-order.
example, users of personal information management The simplest anti-entropy protocol can now be described.
applications, like address books and calendars, canlThe protocol is based on the following three design
reconcile their databases differently than enterprise-widechoices for the reconciliation process:
databases, like the ones used for intranet web-sitesl. itis a one-way operatidretween pairs of servers,
Communication can therefore occur at “convenient” times. 2. it occurs through ther opagation of write operations;
Second, the protocol was designed to effectively support3- Write propagation isonstrained by the accept-order.
the variety of networking and computing environments Pair-wise communication supports the reconciliation of
these applications and users may operate in. any two servers independently of which other servers may

The paper starts with a simple protocol for anti-entropy, be avallable_ and of_how the network conr_1ect|on between
highlighting the features enabled by this basic design:the servers is established. The protocol relies on the theory

support for arbitrary networking environments, support for of epldemlcs_ to ensure that writes eventually propagate to
low bandwidth networks, and incremental progress. It then@!! 0ther replicas [3].

describes protocol extensions that enable other desired A Bayou server can choose its anti-entropy partner at
features: management of the storage resources required fgandom or based on other knowledge, like network

the operations log, propagation using transportable media,ChaI'aCtel'iStiCS. In fact, ad-hoc network connections

support for eventual consistency, and light-weight between arbitrary replicas, as possible with wireless

management of dynamic replica sets. The paper conclude§ifrared links, can be easily supported. Alternatively, a

with a general discussion of how the anti-entropy System could choose to force more structure on the
protocol’s features can be implemented in other systemsCommunication patterns between replicas, for example, by
potential drawbacks of the protocol, policy choices designating master replicas and subordinate replicas that

enabled by the protocol, performance measurements, an@nly reconcile with their masters or by organizing replicas
an expanded discussion of related work. into logical reconciliation rings. Structured communication



anti-entroy(S,R) {
Get R.V from receiing serer R
# now send all the writes unknown to R
w = first write in S.write-log
WHILE (w) DO
IF R.V(w.senerid) <w.accept-stamp THEN
#wisnew for R
SendWrite(R, w)
W = next write in S.write-log
END

}

Figure 1. Basic anti-entropy executed at server Sto updatereceiving server R

patterns permit accurate information about the state of the Our third design choice, enforcing the partial accept-
replicas to be maintained more easily and to be used toorder during anti-entropy, is necessary to maintain a
optimize communication between the replicas. However, closure constraint on the set of writes known to a server,
by restricting the set of servers with which to which we call theprefix-property. The prefix property
communicate, update propagation is more likely to suffer states that a servé that holds a write stampad¥i that
from communication outages. We opted for the peer-to-was initially accepted by another servewill also hold all
peer reconciliation model because of the variety of writes accepted byX prior to Wi. The prefix-property
possibly changing communication topologies it supports.  enables the use of version vectors to compactly represent
The pair-wise anti-entropy protocol was designed to bethe set of writes known to a server. More precisely, the
uni-directional. One server brings another one up-to-dateentry for another serveX in R’s version-vectorR.V(X),
by propagating those writes not yet known to the receivingis the largest accept-stamp afy write known toR that
server. The advantage of one-way reconciliation is that thewas originally accepted from a client Ky
process only requires an initial exchange of state The basic anti-entropy algorithm, shown in Figure 1,
information, thereafter all the protocol’s state is kept at the updates the receiving servB with the writes stored at
sending replica and communication flows in only one sending serve®. This initial protocol assumes that servers
direction, from the sender to the receiver. retain all writes they have ever received. This simplifying,
The anti-entropy design is based on the exchange oftut impractical, assumption is later relaxed in section 3.
write operations because Bayou's conflict detection andDuring anti-entropy, the prefix property and the ensuing
resolution mechanisms require that writes are executed atise of version vectors enable a server to correctly
all replicas. Propagating operations, instead of databasdletermine which writes are unknown to the receiving
contents, has other advantages. Namely, the amount oferverR by comparing the accept-stamp of a write in its
data propagated during reconciliation is proportional to the Write-log with the entry corresponding to the write’s
update activity at the replicas instead of being dependenccepting server inR’s version-vector. The algorithm
on the overall size of the data being replicated. Thus, wherdemonstrates the incremental transmission of each
the database size is much larger than the database updatd#)known write fromS to R. The reverse process, to
the bandwidth required for the execution of the protocol is UpdateS from R, is identical.
reduced. Furthermore, the propagation of update The algorithm is very simple. The sending server gets the
operations avoids any ambiguity introduced by the creationversion vector from the receiving server; then it traverses
and deletion of replicated objects. Protocols based on thdts write-log and sends the receiving server each write not
exchange of deltas or differences in data values requirecovered by that vector. It is worth pointing out that the
additional mechanisms to correctly handle this ambiguity protocol traverses the sender’s write-log only once.
because the existence of a value at one replica and the lackA feature of this algorithm is that it allows anti-entropy
thereof at another cannot correctly identify whether the to be incremental. In other words, reconciliation between
value is new or it has been deleted. Finally, write two replicas can make progress independently of where the
operations can easily be stored in a log, which can then bgyrotocol may get interrupted due to network failures or
used during reconciliation to decide which operations needyoluntary disconnections. When a new write arrives at the
to be propagated. Aside from the creation/deletion receiver it can be immediately included in the receiver's
ambiguity, protocols based on deltas have propertieswrite-log because the sending replica ensures that the
similar to those of protocols based on the propagation ofreceiving server will hold all writes necessary to satisfy the
update operations. prefix property. If interrupted while sending writes, those



writes transmitted successfully to the receiving server canpermitting servers to discard writes that may not have fully
thus be processed and stored in the receiver's write-logpropagated is that anti-entropy between servers that are too
Most importantly, during the next execution of the far “out of synch” may require transferring the full
protocol, these writes need not be resent and the sendingatabase state from one server to the other. Thus, there is a
server only propagates those writes still unknown to the storage-bandwidth tradeoff based on how aggressively
receiving server. Since the ordering in which the writes replicas prune their logs and how frequently replicas
reach the receiving server is important to ensure the prefixperform anti-entropy. This section, after presenting
property, the anti-entropy protocol needs to be Bayou's actual anti-entropy protocol with support for
implemented over a transport layer that guarantees ordereavrite-log truncation, presents a discussion of this tradeoff.

delivery of messages. . -
The basic anti-entropy algorithm has several of the 3.1. Write Stability

features we deem important in a reconciliation protocol: it A stable write, also called acommitted write, is one
supports a variety communication topologies, it supports awhose position in the write-log will not change and hence
variety of policy choices for when and with whom to never needs to be re-executed at that server. Any
reconcile, it operates over low bandwidth networks, and it mechanism that stabilizes the position of a write in the log
makes incremental progress in the presence of protococan be used. Details on the benefits and drawbacks of
interruptions. Additionally, as shown in section 4, the several write stabilizing mechanisms have been described
protocol’s incrementality and pair-wise nature make it in a previous publication [20].

adaptable for reconciliation through transportable media, Bayou uses a primary_commit protoc0| to stabilize
like floppy disks or PCMCIA storage cards, and an writes, hereby ensuring that the stabilization process does
extension of the prefix property enables the light-weight not slow down due to lengthy disconnections of some
management of dynamic replica sets. Before discussingreplicas. In this protocol, one database replica is
these additional functionalities we focus on relaxing the designated as therimary replica and its role is to stabilize

algorithm’s reliance of ever-growing write-logs. (commit) the position of a write in the log when it first
] ] receives the write. As the primary commits a write, it
3. Effective Write-log M anagement assigns a monotonically increasing commit sequence

number (CSN) to the write. The CSN is the most
significant factor used to determine a write’s position in
fhe log; uncommitted otentative writes have a commit

Although very simple, the anti-entropy algorithm
presented in Figure 1 is based on a generally unreasonabl
assumption: that servers do not discard writes from thelrSequence number of infinity. The commit sequence

wnte—lqgs. In practice, although .d'SkS are continuously numbers and accept-stamps define a new partial order over
becomm_g cheaper and denser, it IS unreasonable t0 aSSUMRe \yrites in the system, where write A precedes write B if
that replicas can store ever-growing logs of operations. InA has a smaller CSN. or if both are uncommitted and were
particular, mobile hosts do not have unbounded Storageaccepted by the sarhe server and write A was accepted
This section shows how_ser\{ers can effectively manage thebefore write B. In this order committed writes are always
storage resources of their write-logs. totally ordered amongst themselves, are ordered before any
Previous work on propagating logged writes observedtentative writes, and are thereby stable. The CSN
that a write can be discarded from a replica’s log once thatinformation propagates back to all other servers through an
write has fully propagated to all other replicas. extension of the anti-entropy algorithm described below.
Determining which writes have fully propagated can be when a non-primary replica learns of a write's final CSN,
done by running a distributed snapshot algorithm 10 the \rite becomes stable at that server since the replica

establish a “cutoff” timestamp [17] or by having replicas | previously have learned of all writes with lower
maintain an acknowledgment vector [4] or timetable [1, commit sequence numbers.

12, 21] of which replicas have received what writes. The

. _ X This more complex partial order, callestable-order,
problem with these approaches is that a single, long-

di ted i h ite.| ¢ all oth rpreserves the prefix property requirement of anti-entropy
ISconnected replica can cause the write-logs at all othel,q ., g6 (1) servers reconcile uncommitted writes with the
replicas to grow indefinitely. Sarin and Lynch noted this

roblem and oroposed foreibly removing such sites from primary using the same protocol described thus far, hence
Fhe replica setp[17q y 9 ensuring that the prefix property holds at the time writes

. ~are committed, and (2) servers always propagate
Bayou takes a different approach. In Bayou, each replicacommitted writes before tentative writes as described

can independently decide when and how aggressively topelow. The next subsections show how the anti-entropy

only “stable” writes get discarded. The notion of write the stable-order is used to aggressively truncate writes
stability is discussed below. An important consequence offrom servers’ logs.



anti-entroy(S,R) {
Get R.V and R.CSN from resig sener R
# first send all the committed writes that R does not know about
IF R.CSN < S.CSN THEN
w = first committed write that R does not knabout
WHILE (w) DO
IF w.accept-stamp <= R.V(sener-id) THEN
# R has the writegbut does not know it is committed
SendCommitNotification(R, ccept-stamp, wener-id, w.CSN)
ELSE
SendWrite(R, w)
END
w = next committed write in S.write-log
END
END
w = first tentatie write
# now send all the tentative writes
WHILE (w) DO
IF R.V(w.sener-id) <w.accept-stamp THEN
SendWrite(R, w)
w = next write in S.write-log
END

Figure 2. Anti-entropy with support for committed writes (run at server Sto update R)

3.2. Propagation of Committed Writes 3.3. Write-log Truncation

The part of a server's write-log corresponding to The anti-entropy protocol allows replicas to truncate any
committed or stable writes can be represented by eithemprefix of the stable part of the write-log whenever they
another version vector, a commit vector, or by the highestdesire or need to do so. The implication of truncating the
commit sequence number known to a server, S.CSN. Sincevrite-log is that on occasion a replica’s write-log may not
committed writes are totally ordered by their commit hold enough writes to allow incremental reconciliation
sequence numbers and they propagate in this order, theith another replica. That is, the sending server may have
commit sequence number represents the committed portiortruncated writes from its write-log that are yet unknown to
of the write-log in a concise way. The algorithms in this the receiver. This can occur, for example, when the
section will therefore use S.CSN for this purpose. sending server has received and later truncated committed

To propagate the commit information of writes, the anti- Writes that have not reached the receiving replica because
entropy algorithm cannot just test whether a write is the receiving replica has been disconnected for a long
covered by the receiving servers version vector. Thetime. The protocol needs to detect and handle this
receiving server may have the write, but not know that it is Possibility.
committed. The sending server must therefore first inspect To test whether a server is missing writes needed for anti-
all the committed writes that the receiving server may be entropy, each server maintains another version vector, S.O,
missing. As shown in Figure 2, the algorithm starts by that characterizes the omitted prefix of the server's write-
comparing the two servers’ highest commit sequencelog; a commit sequence number is also maintained for the
numbers. If the sender holds committed writes that theomitted part of the log. A server can easily detect whether
receiver is unaware of, it will send them to the receiver. it is missing writes needed to execute anti-entropy with
Notice that for writes that the receiver already has in another server if its omitted sequence number, S.OSN, is
tentative form but for which it does not know the commit larger than the other server's commit sequence number,
sequence number, only a commit notification is sent. A R.CSN. If so, there exist committed writes that the sending
commit natification only includes the write’'s accept- server truncated from its log, and that the receiver has not
stamp, server-id, and new commit sequence numberyet received. Under this circumstance, if the two servers
instead of the entire write. After the committed portion of still wish to reconcile, a full database transfer has to occur.
the write log is processed, the same algorithm as before isThat is, the receiving replica must receive a copy of the
used to send all the new tentative writes to the receivingsender’'s database that includes all writes characterized by
server. the omitted vector. By sending this database the sender



anti-entroy(S,R) {

Request R.V and R.CSN from redeg sener R
#ched if R's write-lag does not include all the necessary writes to only send writes or
# commit notifications
IF (S.OSN > R.CSN) THEN

# Execute a full databaseatnsfer

Roll back S§ database to the state corresponding to S.O

SendDatabase(R, S.DB)

Send\éctor(R, S.O¥ this will be RS nav R.O vector

SendCSN(R, S.OSM)R’s nav R.OSN will now be S.OSN
END
# now same algorithm as indure 2, send anything that R does not yet know about
IF R.CSN < S.CSN THEN

w = first committed write that R does not yet knabout

WHILE (w) DO

IF w.accept-stamp <= R.V(gener-id) THEN
SendCommitNotification(R, xccept-stamp, wenerid, w.CSN)

ELSE
SendWrite(R, w)
END
w = next committed write in S.write-log
END

END
w = first tentatre write in S.write-log
WHILE (w) DO

IF R.V(w.sener-id) <w.accept-stamp THEN
SendWrite(R, w)
w = next write in S.write-log
END

}

Figure 3. Anti-entropy with support for write-log truncation (run at server Sto update server R)

makes sure that the receiver knows of all the writes neededeconciliation may require much more network bandwidth

to proceed with the regular, more incremental part of thethan the incremental, per write, part of the algorithm.

algorithm. Second, the database transfer is not incremental; the
Figure 3 presents the anti_entropy a|gorithm with support receiving s.erver mqst obtain the full databf’:lse and the

for write-log truncation. The protocol starts by checking if corresponding Version vector and commit sequence

the sender has truncated any needed writes from its writehumber for reconciliation to succeed.

log. If it has all the entries necessary to only send writes or .

commit notifications, the algorithm continues just as 3.4. Storage and Networking Resource

described earlier. However, if there are missing writes, it 1 adeoff

server in addition to the version vector and the commit- jncreased usage of network resources with increased
stamp that characterize the database being sent. Once th§orage requirements by one server to bring another server
receiving server receives the database and theyp.to-date. A server either retains sufficient writes to
corresponding new omitted vector and sequence number, ifjpdate other servers incrementally, or truncates writes
removes all writes from its write-log that are covered by aggressively, which may cause occasional full database
the new omitted vector, but more importantly, keeps all the transfers. Avoiding a full database transfer is important if
writes not covered by this vector, since these may beservers are synchronizing through low-bandwidth or costly
unknown to the sender. After the database transfer, thenetworks and the database is large. Thus, the challenge is
algorithm transitions back to incrementally sending the to reduce the server's storage resources occupied by the
remaining commit notifications and writes not yet known write-log while keeping the chance of having to perform a
to the receiving replica. full database transfer low.

A couple of characteristics of this algorithm should be
pointed out. First, sending the complete database during



The choice of when to truncate the write-log is left to according to specific write orders. As described in this
each server's discretion. One potentially interesting policy section, they also work well with the changes made to the
would be for the server to maintain running estimates of algorithm for more effective storage management.
the rate at which writes are committed and of the rate at .
which writes propagate through the system, and to use?-1. Anti-entropy through Transportable
these estimates to establish when and how much of thdVledia
write-log to truncate. Another, much simpler, policy is to
truncate the write-log when free disk-space at the serve
falls below a certain threshold. Another, more
conservative, but potentially more accurate, approach
would be to maintain an estimate of the maximum commit
sequence number known to all servers.

In addition to supporting varying networking
Tenvironments, the anti-entropy protocol easily extends to
using transportable media, like floppy disks, PCMCIA
storage cards or even PDAs, instead of an actual network
connection.

Figure 4 presents an off-line anti-entropy algorithm that

3.5. Rolling Back the Write-log outputs information about a server's write-log and

database to a file. The main difference between this

The write-log Of. a server needs to be rolled back, gnd thealgorithm and the one discussed in section 3 is that instead
effect of the writes undone from the database, in two

. o X . of sending the data over a network connection, the updates
different situations during anti-entropy: a sender needs to

lback it te-10a if a full-datab ¢ tor | ired are stored into a file. This file is later used by another
rofiback 1ts write-log 1t a full-database transler Is required, go o 1o incorporate the new updates into its write-log.
while a receiver has to roll its log back to the position of

the earliest write it receives. Rollbacks at the sender’s side The off-line algorithm has additional features not present

should be rare, since we expect full database transfers to be! the_ on-line version. First, it takes tW.O parameters, a
rare commit sequence number and a version vector; these

. . . . arameters define the minimum state required by a
On the receiver's side, the write-log is rolled back at P . y

; fient ion. T mizati potential receiver of the file. Any server whose commit
MOSt once per anti-entropy session. 1wo optimizations C"j}nsequence number is at least as large as the CSN parameter
further reduce the overhead of rollback operations. First, if

o . . - and whose version vector dominates the version vector
the replica is receiving writes from more than one replica

; : L X . "~ parameter can use the file to update its write-log. Second,
at a time, that is, the server is involved in multiple anti-

. ) the algorithm writes out the commit sequence number and
entropy sessions, the write-log only needs to be rolled baCK/ersion vector parameters to allow any server that is

once t?j tge msgrtlt(;]n pomt_ .Of the earl:jest W”tte belggt resented with the file to determine whether it meets the
regelvt(:] ' ﬁcgnb’ ke r_?celvmgl stﬁrver toes gof nee inimal state requirements to use the file. Finally, the
redo the rofled-back writes until the next read irom an algorithm also writes out the sender's commit sequence

application. Hence, there _is a tr_adeoff betwee_n lowering number, S.CSN, and the full version vector, S.V. By doing

the cost of near consecutive antl-en_tropy sessions and tth’ it enables receiving servers to quickly determine

latency of th_e nex_t read from a cllen_t. A replica could whether the file holds anything new.

therefore roll its write-log forward, that is, redo the rolled- _ o

back writes, when a certain time threshold has passed since The_ _algonthm can _be modified tq test the_ space

an anti-entropy session. Such a threshold can be based oy naining on the auxiliary stqrag_e device each tlme_ new

the frequency of read operations. data_|s written. Whe_:n the device fills up the cu_rrent file is

terminated by writing the CSN and V version vector

. . corresponding to the last write included in the file. Then, a

4. Antl'entropy Protocol Extensions new fliale-anti?entropy session can be started with the
So far, the paper has presented a reconciliation protocoFlosing parameters of the previous session. Thereby sets of

that supports different networking environments and devices with files that incrementally update other servers

reconciliation policies, is incremental, and allows servers can be generated, a feature that is useful if resource-limited

to manage the storage resources and performance of theRuxiliary devices like floppy disks are used for off-line

write-logs to their best convenience. As mentioned earlier, reconciliation.

the simple anti-entropy design also enables additional . .

protocol extensions: server reconciliation  using 4.2. Session Guarantees and Eventual Consis-

transportable media, support for session guarantees and€ncy

eventual consistency, and light-weight mechanisms 10 |n addition to the partial propagation order required by

manage server version vectors when replicas can b&ne prefix property, Bayou has two additional ordering
created or retired at any time. These features are enabbf’equirements: (1) a causal order to provide session

by the three basic anti-entropy design choices, pair-wisegyarantees to applications and (2) a total order to ensure
communication, exchange of writes and write propagation eventual consistency of all replicas. This subsection shows



file-anti-entroy(fileID, CSN, V) {
OutputCSN(fileID, CSN);
Output\ector(filelD,V);
IF (S.OSN > CSN) THEN
# Execute a full databaseatusfer
Roll back Ss database to the state corresponding to S.O
OutputDatabase(filelD, S.DB)
Output\ector(filelD, S.O¥ this will be the eéceivers nev R.O vector
OutputCSN(fileID, S.OSN¥ the receier's nav R.OSN will nav be S.OSN
CSN = S.OSN# CSN now points to S.OSN, whigill be the eceivers nav CSN at this point
END
# write anything that is not sered by CSN and V
IF CSN < S.CSN THEN
w = first write folloving the write with commit sequence number = CSN
WHILE (w) DO
IF w.accept-stamp <=V(wenerid) THEN
OutputCommitNatification(fileID, vaccept-stamp, \wenerid, w.CSN)
ELSE
OutputWrite(fileID, w)
END
w = next committed write in S.write-log
END
END
w = first tentatie write in S.write-log
WHILE (w) DO
IF V(w.senerid) <w.accept-stamp THEN
OutputWrite(filelD, w)
w = next write in S.write-log
END
OutputCSN(filelD,S.CSN);
Output\ector(filelD,S.V);

Figure 4. Off-line anti-entr opy through transportable media (fom S to a file)

how both of these stronger write orders are easilythe server will always get a higher accept-stamp than all
supported by the anti-entropy protocol; in fact, no changesother writes known to that server, and through that get
need to be made to any of the algorithms in Figures 1-4.  ordered after them. Because the ordering constraints of the
Bayou proides applications wittsession guaranteds casual-accept-order are stronger and cover those defined
reduce client-obseed inconsistencies when accessing by the regular accept-order, the prefix property continues
different serers. The description of session guarantees hasto hold; furthermore, propagating writes in the causal-
been presented elsbere [19].However, with respect to accept-order is sufficient for the order to be applied at all
anti-entropy, the important aspect of session guarantees i§€rvers. The anti-entropy protocol thus supports the causal
that their implementation requires writes to be causally ordering needed to implement Bayou's session guarantees
ordered. The causal order is a refinement of the acceptWithout changes.
order, calledcausal-accept-orderand specifies thaany In general, without making assumptions about the
write A precedes another write B if and only if, at the time commutativity of writes, a total write ordés necessary to
write B was accepted by some serfrom a client, write A ensure that replicas holding the same set of writes also
was already knen to that serer. The causal-accept-order hold the same database contents. The stable-order
is established through the accept-stamps assigned to writemtroduced in section 3.1 provides eventual consistency of
when they are first accepted by a server. To this end, eaclstable writes. However, we deem eventual consistency to
server maintains a logical clock [13]. This logical clock be an important property of weakly consistent storage
advances both when new writes are accepted by the servesystems, which should be achieved even for non-stable
from clients, or when writes with higher accept-stamps arewrites. The accept-order can be easily converted into a
received through anti-entropy. Thus, a write accepted bytotal order by using the identification of the server that



accepted the write: accept-stamps are used for the causalmportance of this feature and advertises it as one of the
accept-order described above and server identifiers arekey differentiators of the system [10].
used to break ordering ties between writes with equal In Bayou new servers can be created, and simi|ar|y
accept-stamps. To ensure eventual consistency, writes argetired, by communicating with any available server. Anti-
propagated between servers and stored in a server's writéentropy can easily support these operations if the version
log according to the total order defined by the accept-vectors are updated to include or exclude the new or
Stamp and server-id tuple. The stable-order of section 3.1retired servers. Dynamic management of the version
can also be converted into a total order. To convert thevectors needs a mechanism to (]_) unique|y assign
stable-order into a total order three factors are Used,identiﬁers to new|y created servers, and (2) allow any
namely <CSN, accept-stamp, server-id>, with the commit  server to correctly determine whether a server has been
sequence number being the most significant factor, and theyewly created or retired. The prefix property and the
sever-id again only used to break ties among accept-causal-accept-order requirements placed on the
stamps of non-stable writes. propagation of Bayou writes are used to provide these
The ordering imposed on the propagation and executionmechanisms. Write accept-stamps are used to assign server
of writes plays two different roles: (1) ensure the prefix identifiers that exactly determine the location and time of
property that enables the version vector representation of aach server’s creation. These server identifiers can then be
replica’s state, and (2) provide applications with compared with the version vectors stored at each replica,
guarantees on the “quality” of the data held by a replica.to determine whether a server is hew or has been retired.
The ordering extensions discussed in this subsection,The next two subsections describe the creation and
causal and total, address only the second role.retirement of serversin more detail.
Furthermore, by being consistent with the ordering ) ) )
requirements for the prefix property, no changes were Creation and Retirement Writes
needed to accommodate these extensions in the design of A Bayou serverS; creates itself by sending @eation
the anti-entropy algorithm itself. In fact, the anti-entropy write to another serves,. Any server for the database can
algorithms can accomr_nodate any or_der that provides theoe used. The creation write is handledpyjust as a write
closure properties required by the prefix property. from a client. The write is inserted 8)’'s write log, and is

4.3. Light-weight Server Creation and Retire- identified with the<infinity, Ty;, S\> three-tuple, where
ment Tk.i is the accept-stamp assignedSyy

In most systems, the creation of a data replica is a heavy '€ creation write serves two main purposes. First, as it
weight operation. It normally requires the intervention of Propagates via anti-entropy, it informs other servers of the
system administrators or the interaction with specific €xistence of5;. The effect of the execution of the write is
servers. In Oracle, for example, master replicas can onlythat an entry fo§; is added to the server’s version vectors
be created at the master definition replica, and all existingthat cover this write. Second, it providBswith a server-
masters must quiesce during the new master’s creationjq that is globally unique and clearly identifies the time of

SnapShOt I’eplicas can Only be created at master replicaﬁs creation. Specifica”ysTk’i, Sk> become§i’s server-
[16]. Coda requires that the replication factor and the ;4

locations of servers be specified at volume creation time;
although the system supports later addition of replicas, the =~ WA T
implementation is based on the assumption that it will not!mnallze its own accept-_stamp counter. This initialization
be a frequent operation [18]. Mobile caches in Coda can!S Nnecessary so all writes accepted by the new server
only be loaded from replica servers and not from other follow its creation write in the causal-accept-order.
mobile caches. Golding’s mechanisms require that K Note that the recursive nature of the server identifiers
servers be available for server creation [4], so that K-1 of affects the size of the version vectors. At one end, if all
these servers may fail and at least one server will includeservers are created from the first replica for the database,
the newly created server in its view of what replicas exist. all server identifiers will contain only one level of
Lighter weight mechanisms for server creation and recursion anq thus be short. On the other hand,'lf rep[lcas
retirement enable more flexible usage scenarios. For2r® created linearly, one from the next, server identifiers
example, when two colleagues meet on a business trip, on&ill be increasingly longer, and the version vectors for
can get a replica of the budget plan from the other such a database will therefore also be much larger.
colleague and immediately start receiving all the updates When a server is going to cease being a server for a
made throughout the budgeting process. The user does ndtatabase, it does so by issuingeirement write to itself.
have to wait for a connection with either a master server orAgain, the write is stamped just like any other Bayou

a quorum of replica servers. Lotus Notes has identified thewrite. Its meaning is that the server is going out of service.
At this point, the server will no longer accept new writes

The new server also uses the value Bf;(+ 1) to



from clients. However, the server must remain alive until it CompleteV(S; = <Ty, S>) =

performs anti-entropy with at least one other server so that V(S)) if explicitly available

all its writes, including its retirement write, get propagated plus infinity if S;j =0, the first semer

to other servers. plus infinity if CompleteV(Sy) = Ty
When a server receives a retirement write, it removes the minus infinity  if CompleteV(Sy) < T

corresponding entry from all the server's version vectors A yajye of minus infinity indicates that the server has not
that cover this write. The prefix property ensures that ayet seers/'s creation write, and plus infinity indicates that
server S will have received and processed all writes , . :

ted b%. bef . f " i . the server has seen bo®y's creation and retirement
accepted byp; before removings; from its version vector. writes. A server can use th€ompleteV function as

L ogically Complete Version Vectors defined above to always correctly determine which writes

. to send during anti-entropy.
One thprny problem remaims, however: yvhen the The dynamic management of version vectors allows a
protocol is executed at the sending server, it needs to

decide if it i o th L by | tserver to create itself by contacting one server for the
ecide 1 a t\;]w' N '.S; pew 0 tetrecelvm?h st(?]rver Y JUSt yatabase. After issuing its creation write, the newly created
comparng the wrles accept-stamp wi € TECENING garver needs to perform anti-entropy with the server that

sehrver tsh version _vector; SPeC'f'C‘?"y’ thet p“?b'e“.” oceurs just created it. Through this anti-entropy session the newly
when ine receving Servers version vector IS missing an ¢ o 4ia replica will itself hold its creation write. Note that

entry. The send_lng server has to correctly determmethe new server's first anti-entropy session is likely to
whether the receiver has eliminated the entry because the . 4o 4 full database transfer. After the anti-entropy

server cprresponding to that entry has retired, or Wheth(_er ession between the new server and its creating replica, the
:Ee receiver hast nev\(/e\;hh(teard 'to f thte server astsoc@;gd I\INIt reation of a replica can tolerate any other failure, because,
€ missing entry. at writes ‘1o propagate critically by virtue of its server-id and version-vector, the new server

depends on .the outcome of this decision. holds all the information it needs to positively identify its
More precisely, a served; may be absent from another reation.

server’'s version vector for two reasons: either the server
never heard abous;'s creation, or it knows tha®; was 5. Discussion
created and subsequently destroyed. Fortunately, the
recursive nature of server identifiers in Bayou allows any This paper has presented the design of the anti-entropy
server to determine which case holds. Consider theprotocol in a series of steps, each focusing on the features
scenario in whichR sendsS its version vectors during anti- €nabled by refinements or extensions of the basic three
entropy, andR is missing an entry fo§; = <Tk,iv S>. anti-entropy building blocks: pair-wise communication,
There are two possible cases: exchange of operations, and the ordered propagation of
operations. The presentation has been framed in the
context of Bayou and its requirements. This section
discusses the anti-entropy protocol independently of the
Bayou system. It starts with a deconstruction of the
protocol, pointing out which of the protocol’'s properties
enable each of anti-entropy’'s features and how these
If R.V(Sy) < Ty, then serer R has not yet see§j's features can be provided in systems that were designed
creation write, and thus cannotveaseen the retire-  wijth some, but not all, of the same components. The
ment eitherS therefore needs to seRdall the writes  section continues by highlighting some of the drawbacks
it knows that hae been accepted (8. of the design presented in Sections 2-4. Finally, the
Note that this scenario assumes tRaV includes an  discussion focuses on some of the policy choices and
entry for Sy. Since multiple servers may retire or be tradeoffs enabled by the anti-entropy design and the
created around the same tinRés version vectomay be ~ Security issues raised by the use of a peer-to-peer model of
missing entries for bot!s; and S, in the example used Update propagation.
above. Fortunately, the presence of an entrySfpis not ..
essential to identify retired servers. The solution is baseds'l' Implications for Other Systems
on the recursive nature of the server identifiers. Imagine a Table 1 presents the dependencies between features of
CompleteV vector that extends the information stored in the anti-entropy reconciliation protocol and its design
the V vector to include timestamp entries for all possible components. Marked entries in the table indicate a

servers. A recursive function can compute entries for thisdependency between a feature and a design choice. The
extended vector: high-level message of this table is that each of the

If R.V(Sy) = Ty, then sererR has seer$;'s creation
write; in this case, the absenceSyffrom R.V means
that R has also seef;'s retirement.S can safely
assumeR knows that serer S; is defunct, and does
not need to send gmew writes accepted bg; to R.
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. . One-way Operation- Partial . Causa! Stable
Feature\ Design Choices Peerto-Peer based Propagation | Propagation Log Prefix
Order Order
Arbitrary Communication dpologies
Arbitrary Poliy Choices
Low-bandwidth Netwarks O
Incremental Progress o 0 O
Eventual Consisteryc *
Aggressie Storage Management
Use of Tansportable Media o O
Light-weight Dynamic Replica Sets o 0 ad
Per Update Conflict Management O
Session Guarantees O

Table 1: Features enabled by specific anti-entipy design components

* Small marks indicate that the feature is facilitated by the design choice, but does not depend on it.

** Eventual consisteryccan be supported with the incremental protocol by either establishing a total order on all
updates, making operations commuwgatior by enforcing a total order on the progiamn of updates that are part
of the stable prefix.

protocol’s features depends only on a few design choicespperations or deltas because the unit of propagation is
and that many features can be provided independently. small. Again, incremental progress can be provided
The unidirectional peer-to-peer reconciliation model independently of the mechanisms provided by the system
supports reconciliation over arbitrary communication for other features like data consistency and replica set
topologies and a wide variety of policy choices of when management.
and with which replica to reconcile. Both of these features Anti-entropy’s mechanism to cope with the aggressive
co-exist independently of the protocol’'s mechanisms toreclamation of storage resources depends on the
establish what data to reconcile, the formats used forstabilization of some prefix of the operations-log. Any
update propagation, and the order in which data propagatesnechanism to stabilize the order of operations and to
in the system. propagate this information back to the replicas is sufficient
The protocol’s operation over low-bandwidth networks for this purpose.
is enabled through reconciliation based on the propagation Reconciliation using floppy disks or other transportable
of update operations. Low-bandwidth networks can be media can be supported by systems that structure the
similarly accommodated by protocols that exchange deltasreconciliation process as a one-way protocol and that
or differences in the replicas’ values. Other systems canprovide an ordering over the data to be reconciled. In fact,
reconcile over low-bandwidth networks using either systems that provide incremental reconciliation protocols
update or delta-based techniques, independently ofare likely to be well suited to also provide file based
whether they limit the communication patterns between reconciliation mechanisms.
replicas or whether they impose particular order on the |ight-weight creation and retirement of servers, the last
propagation of the updates or deltas. feature introduced for the anti-entropy protocol, depends
Update propagation between replicas can makeonly on the use of the causal-accept-order defined over
incremental progress if an order can be established oveupdates generated in the system. A system can adopt this
the data to be reconciled. The minimum requirement is atechnique as long as its reconciliation mechanisms enforce
partial order over the updates introduced throughout thesuch an ordering during propagation so that version
system. The peer-to-peer model facilitates the incrementalectors can be used for state representation and operations
progress of the reconciliation protocol because have a causal relationship. Also, an equivalent of the
determining which data needs to be reconciled dependsreation and retirement writes must be provided. However,
only on the state of two replicas. The incremental nature ofit is not necessary for these systems to base their
the protocol is also facilitated by the propagation of reconciliation protocol on operation exchanges per se.
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In summary, one of the strengths of the anti-entropy becomes available, when it detects the bandwidth is above
protocol design is that many of its features can be some threshold, when the CPU load is down, or when its
reproduced by other systems, even though they maywrite-log is growing large and committing a series of

diverge in the design choices for other functionalities. writes becomes necessary. In general, increasing the
. frequency of anti-entropy among servers increases the rate
5.2. Disadvantages of update propagation, the degree to which servers are up-

The Variety of features enabled by the anti-entropy to-date, and the rate at which writes stabilize but at the

protocol result from each replica’s ability to reconcile with €xpense of greater bandwidth consumption due to protocol
any other replica in the system, and to do so by onlyoverheads.

consulting each other’'s version vectors and the sending Similarly, policies for choosing with whom to perform
server’'s write-log. The drawbacks of the anti-entropy anti-entropy can depend on multiple factors: which other
design are associated exactly with the potential sizes ofreplicas are reachable, the network characteristics of the
these two data structures. connection to these replicas, the up-to-dateness of the

The version vectors used for the anti-entropy protocol replicas, whether the replicas have truncated too many
need an entry for each replica in the system. The size ofentries from their logs, and which replica is serving as the
the vectors thus grows in proportion to the number of primary. Policy choices for anti-entropy partners, like
replicas and the complexity of the replica creation pattern.those for when to reconcile, generally trade off bandwidth
When the number of replicas of a database is largeusage against propagation rates. Previous work on
compared to the update activity in the system, the cost ofanalyzing epidemic-style algorithms, like those used in
exchanging version vectors during an anti-entropy sessionBayou, has shown that a judicious choice of anti-entropy
can become a dominating performance factor. However, adpartners can dramatically reduce the total traffic required
shown in section 6, when servers get created in well-to propagate updates, while yielding only modest increases
behaved patterns, the version vector size does not have & the propagation delay [3]. The key is to favor nearby

significant impact on anti-entropy performance for S€rvers and to avoid overloading slow network links.
replication factors of a few thousand. Golding also explored biasing the selection process to

To satisfy Bayou's propagation order requirements, eachf@vor nearby anti-entropy partners [4].
server must retain all tentative writes in its write-log. Log As discussed in section 3.4, policies to decide how
compaction, such as the removal of entries that first insertaggressively to truncate the write-log trade off storage and
and later delete an object from the database, cannot b&etworking resources needed during anti-entropy. Very
used. Each server therefore has to keep all the writes it hagggressive write-log truncation may cause lengthy anti-
received until it is notified of the writes’ commitment. €ntropy sessions between some servers because of the need
Hence, if the update activity of the database is large whileto do full database transfers. Observe that write-log
the commit rate is low, the size of a server's write-log can truncation policies can be associated with groups of

grow large. replicas. Within a group, a few replicas may be designated
) o as the servers of choice with whom to reconcile; these
5.3. Anti-entropy Policies replicas could retain more writes in their write-logs to

Four types of policies are enabled by the mechanisms offXPedite anti-entropy with replicas inside and outside of
the anti-entropy protocol: policies for when to reconcile, the group, allowing other replicas in the group to reclaim

policies for choosing with which replicas to reconcile, Storage more aggressively.

policies for deciding how aggressively to truncate the Finally, policies used to select a server from which to
write-log, and policies for selecting a server from which to create a new replica can affect the performance of the anti-
create a new replica. The different policy choices affect entropy protocol as shown in section 6. When several
not 0n|y the performance and cost of the anti-entropy servers are available to create a new replica, their

process but also how quickly updates propagate to othefespective server identifier lengths should be considered in
rep|icas, how up-to-date a rep|ica is, how |arge the write- addition to the other characteristics of these replicas, like

log gets, and how quickly writes stabilize. up-to-dateness, connection bandwidth, and completeness

Potential policies for when to reconcile a replica include: Of their write-logs.

periodic recongiliation, manualily triggered reconciliation, 5.4. Security

and system triggered reconciliation. In other words, a

rep|ica can communicate with other rep”cas at recurring In addition to the policies discussed thus far, the level of
intervals, users can explicitly activate the reconciliation security enforced during the reconciliation process can
process, and anti-entropy can be initiated by servers whersignificantly affect its performance. The peer-to-peer
certain system characteristics are met. For example, @nodel of the anti-entropy design has a variety of security
server may initiate anti-entropy when a network link implications. Replicas may have different levels of trust in
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other replicas and in clients. The trust relationship may 6.1. Experimental Setup
even change depending on the location of a replica, for
example, if inside or outside a firewall. The security model

may not want to depend on third party authorization . . .
. . » . : instead of a file system to store mail messages. Each
services to avoid additional networking requirements. If . . )
experiment measures the time to run the anti-entropy

operations need to be authorized at all servers, security . .
. - ) rotocol between two replicas of the mail database. In all
meta-data, like certificates, may need to propagate with the?

operations. The higher the level of security that is required,eXpe”mentS’ only committed writes are propagated, and

. : ach write inserts a new e-mail message into the database.
the more security related operations need to be execute " . ; )
. A n addition, for each anti-entropy session the size of the
during the reconciliation process.

; ) ) L . propagated writes, or e-mail messages, is held constant.
The Bayou implementation relies on digital certificates rasyits were collected for two message sizes: 3000 byte
and a hierarchy of trust delegations to implement Security'messages and 100 byte messages; the message sizes
Before untrusted Bayou replicas reconcile, they jncydes both the headers and the message bodies. The

authenticate each other. In addition, writes include 5146 size roughly corresponds to the median size of mail
certificates to authorize database accesses for a final t'm‘?nessages. While the small messages were artificially

when committed at the primary. Each of these security .onstructed. the
measures add to the reconciliation times of fully secured '

The measurements were taken for BXMH, a version of
the popular EXMH e-mail application that uses Bayou

large messages correspond to real
messages received by one of the authors, either truncated

Bayou databases. or extended to be 3000 bytes long.
f | . Two platforms were used in the experiments:
6. Performance Evaluation SPARCSstation-10s running SunOS 4.1.3 (labeled SS in the

The implementation of the anti-entropy algorithms in 9raphs), and 486-based laptops running Linux 2.0 (labeled
Bayou consists of 2846 lines of POSIX-compliant C code. 486); all machines are clocked at 50MHz. The file system
The implementation relies on an existing write-log _used to store the replica’s write-log on the SPARCstations
implementation (1730 lines), a database manager (147685 NFS, whereas the laptops use UFS. Two types of
lines), and utility routines to manipulate version vectors, network connections link the replicas in these expenment;:
server identifiers, and write stamps (1081 lines). The @ one hop, 10 Mbps ethernet connection, and a PPP (point-
implementation also relies on a runtime environment with t0-point protocol) connection over a 9.6 Kbps modem and
support for user-level threads, garbage collection, and arfnen two ethernet hops to the second server within a
RPC package. In this section we present an evaluation ofirewall. In practice, the achievable bandwidth over the
the performance of this implementation, which runs modem reaches up to 26.2 Kbps due to compression.
unchanged on both SunOS 4.1.3 and Linux 2.0 platforms.  Each measurement was taken at least five times, for the

In summary, the analysis and measurements in thisfaster experiments sometimes up to ten times. All figures

as expected: if these do not clutter the presentation, otherwise standard

* An anti-entropy session propagates only writes deviations are reported in the captions.

unknown to the receiver, and hence performs as a linear g o Anti-entropy Execution Times

function of the number of such writes and the available . o )
network bandwidth: Figure 5 demonstrates that the execution time of the anti-

entropy protocol is a linear function of the number of new
writes being propagated. The slope of the function depends
on the size of the messages being exchanged and the
network bandwidth available for reconciliation.

The range of performance observed for anti-entropy of
3000-byte e-mail message writes starts with two servers
running on the SPARCstations communicating over the
ethernet, which requires 2.26 seconds to propagate the first
. _ ) write and a little under 5 seconds for each additional 100.
depending on the pattern in which servers are created At the other extreme, for the laptop and modem, it takes

from gtherS; _ ) ) 7.16 seconds for the first write and about 150 seconds for
+ The simplest implementation of checking whether a each additional 100 writes.

write is covered by a version vector takes time between
linear and cubic to the number of servers, depending on
how the servers are created.

* While traversing its write-log, the sender spends only a
minimal amount of time deciding which writes to
propagate;

» The bulk of the anti-entropy algorithm execution time is
spent on the network and applying the newly received
writes to the write-log and database of the receiver;

» Version vector storage requirements grow between
linearly and quadratically with the number of replicas,

These numbers have significant room for improvement
since each Bayou write that adds an e-mail message to the
BXMH database currently has two substantial data
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Figure 6. Anti-entropy execution time breakdown for the propagation of 100 writes
(standard ddations on all total times are within 2.2% of the reported numbers)

overheads: 520 bytes for the public key of the principal To further analyze the performance of the algorithm, we
that is updating the database, which is included for accesdroke down the execution time of anti-entropy sessions
control purposes; and 1316 bytes of update schemahat propagate 100 writes between two replicas. Each of
information and data cell padding. These update schemahe bars in Figure 6 corresponds to a different experimental
and cell padding overheads are unnecessarily large; 40%onfiguration. The labels indicate on which platform the
of the overhead corresponds to the ASCII strings of thereceiving replica ran, what network connection was used,
column names of each field being updated, while the and which size messages were propagated. In all cases the
remaining fraction of the 1316 bytes are zero filled to pad sending replica ran on a SPARCstation, which does not
data cells because SunRPC represents everything by aaffect the performance of anti-entropy since, as the cost
integral number of 4-byte words. As shown below, more breakdowns show, the overheads at the sending replica are
sophisticated representations for update schema and celhninimal.

padding would substantially improve the performance of As Figure 6 shows, the factors that contribute the most to
anti-entropy over the modem. Similarly, systems with the performance of the anti-entropy interactions are:
different access control policies or mechanisms could, Network transfer: the most significant overhead of the

obviate_the need to transmit public keys with every wr_ite anti-entropy sessions corresponds to the actual
and, with that, also reduce the overall communication transmission of the writes. This phase includes the

overhead. marshalling and unmarshalling of the writes being
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Figure 7. Network independent anti-entropy algorithm componentsfor the propagation of 100 writes
(standard deations on all total times are within 2.9% of the reported nunjbers

propagated, as well as the time on the network itself. In Since the network transfer time dwarfs most of the other
the graph, the network transfer time is subdivided into  execution time components of anti-entropy, Figure 7

four categories: time to marshall and unmarshall the shows the smaller overheads of the algorithm; they
RPC data, time related to transfer actual message exclude the network transfer time and the anti-entropy
information, time to transmit each write’s public key setup time. We chose not to include the setup time because
and the overhead to transmit the update schema it involves operations such as authentication, which other
information and data padding for each write. As implementations may choose to exclude, and RPC

mentioned earlier, systems with different access control initialization, which can be implemented differently by
mechanisms and more efficient schema and padding other systems. These smaller components also correspond
implementations could eliminate a substantial part of to the network independent portion of the anti-entropy
the communication overhead, particularly in the modem algorithm.

cases. Of these network independent overheads, the largest
The figure also shows that the bandwidth over the component corresponds to inserting all newly received
ethernet between the SPARCstations is about double  writes in the receiver's write-log. Figure 7 breaks that
that achieved between the laptop and the operation down into four subcomponents: canonicalizing

SPARCStation; the bandwidth in the former case varied of the new writes for string Sharing purposes, marsha”ing

between 4.6 and 5.8Mbps, while the laptop’s ethernet  the new writes to serially write the in-memory data
connection only achieved 2.4-3.1Mbps. The observed  structures out to disk, the actual disk 1/O time, and the
bandwidth over the modem varied between 23.3 and  transactional overhead to manipulate the write-log.
26.2Kbps for the communication of the two sets of 100  Bayou’s current implementation is based on an in-memory
writes. database and string canonicalization is necessary to reduce
Anti-entropy setup: during this step the sender locates memory overheads, but may not be needed in other
other replicas using the name service, sets up the RPC systems. The marshalling implementation is not optimized
handle to communicate with the receiving replica, and  either. We believe that the canonicalizing and marshalling
performs the challenge response protocol that is used in steps have ample opportunity for performance

Bayou to mutually authenticate replicas before they improvements.

engage in the actual propagation of writes. The last The second largest cost component shown in Figure 7
response of the authentication protocol also includes the corresponds to applying the 100 newly received writes to
version vector state information from the receiving the receiver's database. This time ranges between 335

replica. This setup time accounts for most of the time it msec. on the SPARCStation and 959 msec. on the laptop.
takes to transmit one write. For 3000 byte messages the Database performance will necessarily vary depending of
setup time in the ethernet case is 2.08 seconds and in thehe database manager used in the system’s implementation.

modem case 4.63 seconds, which corresponds to 65-  These numbers should therefore only be considered as one
88% of the first write propagation times reported earlier. performance example.

Applying the newly received writes at the receiver: Finally, Figure 7 shows that the time spent in the
the last observable overhead in Figure 6 is due tothe  ajgorithm to determine which writes are new to the
processing of the received writes at the receiving receiving replica is negligible, taking as little as 11 msec.
replica, both incorporating the writes into the write-log  and only a maximum of 42 msec. in these experiments, in
and applying them to the database. which all writes are unknown to the receiver. Separately
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Figure 8. Anti-entropy execution time for 100 writes as a function of the number of replicas

we also measured the time for a sending server to traverséhat 1000 servers can be supported easily. On the other
100 entries of its write-log when all of these writes are hand, as shown in Figure 8.b, execution times grow
already known to the receiver. For all the server pairs, quadratically in the most costly server creation pattern.
network combinations, and write sizes reported, this time The cubic factor does not appear in Figure 8.b because no
is less than a tenth of a second. servers had been retired from the system.

. The measurements in Figure 8 correspond to the
6.3. Effect of Server Creation Patterns propagation of 100, 3000-byte messages between
As mentioned in section 4.3, the space required toSPARCstations over the ethernet connection. The
represent a version vector depends on the pattern of servaneasured execution times include both the writes’ accept
creations. To be concrete, the representation used “on thetamps to version vector comparisons and the marshalling
wire” in our RPC protocol is the SunRPC representation of and network time for the initial back-flow of the receiver’s
a sequence of<server-id, accept-stamp> pairs. This version vector. In comparison, the numbers reported in
representation takes section 6.2 correspond to a system with three replicas.
N If the size of version vectors causes performance
4+12N+ 5 8|S . . "
£l problems due to excegdlngly Iong server-identifiers, the
bytes for a vector of N servers, where |Si| is O for the!|gh_twe|ght server cr_eaﬂon ar_1d_ret|rement can be_us_ed o
institute practical policies to limit the number and lifetime

initial server of a system and 1 + |Sk| when Si is created ) -
of servers whose creation was far removed from the initial

from server Sk. Accept-stamps are 8 bytes long. In the . :
server. For example, a server can recreate itself with a

most storage efficient case, all servers are created from thé : N .
o . . . Smaller identifier if it locates another server with a smaller
initial one, and the version vector representation requires;

20N - 4 bytes, or 20 Kilobytes for 1000 servers. In the identifier than the one of the server’s original creator. This

- . rocess requires the issuance of a retirement write, a new
least storage efficient case, servers are created in one lon

chain, and the version vector representation requires 4N"2 reation wr_|te_, and anti-entropy with t,he new crea;or; It
+ 8N + 4 bytes, or 4 Megabytes for 1000 servers. can be optimized to reuse the server’'s existing write-log

) ) T and database.

The time to test whether a given write is among those
represented by a version vector may, in the worst case;
grow cubically. This time analysis is based on a very 7. Related Work
simple implementation that uses a list data structure for the A number of research and commercial systems have used
version vector representation. The three multiplicative weak consistency replication and propagated updates
factors result from: (1) traversing the list representation of among replicas in a lazy fashion. Each of the individual
the version vector, (2) comparing the server identifiers of features of Bayou's anti-entropy protocol have almost
each entry in the list with the server-id of the write, and (3) certainly appeared in previous systems in some form.
if an entry for a server is not present, recursively Interesting differences lie in the implementation details
calculating CompleteV. More sophisticated data about what information gets exchanged between replicas,
structures like hash tables with a one way hash functionwhat data structures are used to keep track of other replicas
could be used instead, making the time linear. and the state of these replicas, what communication

Figure 8.a shows that the execution time of anti-entropy patterns are allowed between replicas, and so on.
is a linear function of the number of servers in the systemUnfortunately, detailed information about how other
for the least costly server creation pattern. It also showssystems reconcile their replicas is difficult to obtain,
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especially for commercial products. One contribution of discard deleted data [17]. When update operations rather
this paper is describing a reconciliation protocol in detail than data are used for reconciliation, deletions are handled
along with the design decisions that went into it. In this automatically as just another type of update operation, and
section, we discuss how other systems' protocols compareervers can immediately reclaim the space used by deleted
to Bayou's based on the sketchy information available. data items.

Grapevine, one of the earliest weakly replicated systems, A goal in the design of Bayou's anti-entropy protocol
propagated updates via electronic mail [2]. Electronic mail was to ensure that servers can make progress even if the
is not completely reliable, however, so the product version protocol is disrupted by the loss of a network connection.
of Grapevine, called Clearinghouse [15], added a That is, a server should be able to use and propagate to
background anti-entropy process in addition to mail other replicas any updates that it receives even if the
delivery. It was later realized that epidemic style protocol does not complete successfully. Some systems
algorithms, like Clearinghouse's anti-entropy, could be run their reconciliation process as an atomic transaction
used by themselves to fully propagate updates [3]. Pair-and hence lose the incremental property. Coda has added a
wise reconciliation of replicas is currently used in several trickle reintegration protocol for use by weakly-connected
systems besides Bayou, including Notes [10], Ficus [7], clients; while this protocol is atomic, it includes the notion
and refdbms, which uses Golding’s timestamped anti- of a chunk size that can be set to a small value to achieve
entropy protocol [4]. incremental reintegration [14]. Also note that systems

Rather than a peer-to-peer model in which any replicabased on queued RPCs, such as Oracle, can make
can contact any other replica to reconcile their data, somdncremental progress since each RPC is generally run as a
systems organize replicas into a hierarchy where a replicsSeparate transaction [16].
only exchanges updates with its parent or children. Techniques for changing the set of replicas vary widely
Examples of this are the client-server reconciliation among systems. In systems with a client-server or primary-
protocols in file systems like Coda [11] and distributed secondary relationship between replicas, new clients or
object systems like Rover [9], and also the primary- secondaries can generally be created by simply contacting
secondary or master-snapshot protocols in databasehe primary site. In peer-to-peer systems, adding or
management systems like Oracle [16] and Sybase [5]. Dueemoving replicas often requires a system administrator
to their simplified communication patterns, these systemsand reconciliation between replicas. Golding uses a group
can more easily maintain accurate information about themembership protocol that requires a new replica to find
state of the replica(s) with which they exchange updates.some number of sponsor replicas and a retiring replica to
However, update propagation is more affected by wait until notice of its retirement reaches all other replicas
communication outages. [4]. Notes [10] and Microsoft Access [8], as far as we can

In many systems using lazy replication, the information tell, are like Bayou in that they allow replicas to be created
exchanged between replicas is based on data objects witFeadily from any existing replica, though it does not appear
associated update timestamps or version vectors. This ighat the knowledge of new replicas is propagated
true for Grapevine [2], Clearinghouse [15], Notes [10], and throughout the system as in Bayou. Bayou is the first
Microsoft Access [8]. File systems like Coda [18] and System we know about that employs version vectors to
Ficus [7] exchange updated files between servers orcharacterize a replica's contents, allows any replica to
between clients and servers. The notion of reconciling logsaccept updates, and yet permits lightweight creation and
of update operations held at various replicas, as is done iffetirement of replicas.

Bayou via the anti-entropy protocol, has been discussed for
some time in the literature [1, 17, 21] and is used in some8. Conclusions

commercial database systems [5, 16]. Oracle7, for Th . tributi f thi is in the detailed
instance, wuses asynchronous RPCs to propagate € major contribution of this paper IS in the detare

transactions between a master and its snapshots or othd}esentation of B_ayous protocol_ for Iazﬂy propagatmg
masters [16]; it does not, however, allow these transactionUpdate_S between its weakly_ conS|st_e r_1t replicas along with
to propagate through intermediary servers. Rover also useg‘,he brlatcljogali f_l(?r: eacht de|5|_gn de(t:_lsu?n_ anld thetfzature(:js
operations as the unit of reconciliation by queuing RPC enabled Dy 1t 1he protocol 1S practical, Implemented, an

invocations that are eventually applied to the master copyqUIte :5|mp|e_. Three basic design decisions W?”t _mto
of an object [9]. Bayou’s anti-entropy protocol: the model of pair-wise

. reconciliation between peer replicas, the exchange of write
Systems that propagate updated data objects need a P P g

. . _ Qperations stored in per-replica logs that are compactly
additional mec_hanlsm to handle _del_eted objects. I:Orcharacterized using version vectors, and the propagation of
example, Clearinghouse servers maintained and eXChangeﬂ/rites between replicas in an order that is closed with
“death certificates” for deleted objects [3, 15]. Protocols respect to the writes’ accept, causal, or total order
have been devised to decide when replicas can safely ' ’ '
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Although none of these design decisions in isolation is
particularly novel, together they provide the flexibility
necessary to cope with the diversity of networking
environments in common use today, including unreliable
wireless networks, dial-up modems over telephone lines,
the global Internet, and even “sneakernet”. They permit
replicas to make incremental progress towards their

convergence in the face of involuntary disconnections (4]

while giving replicas control over the pruning of their
individual write-logs. They also support Bayou’s style of
conflict resolution and its session guarantees.

Additionally, Bayou incorporates a new lightweight
mechanism for creating and retiring replicas that builds on
and is compatible with its anti-entropy protocol. Special
creation and retirement writes propagated via anti-entropy
and server identifiers built from a hierarchy of write-
stamps permit replicas to reconcile any differences that
may exist in their views of the current replica set.

Key to the flexibility of Bayou's anti-entropy design is
the separation from the protocol itself of the policies for
choosing pairs of replicas to reconcile and at what times.
Optimal policies for choosing anti-entropy partners depend
on a number of complex factors such as the available

bandwidth between replicas and the cost, perhaps in reai8]

money, of communication between them. Admittedly, the
current Bayou system uses the most simple policies
imaginable, like random selection. Exploring different
policies and their effect on the rate and cost of overall

system convergence, as well as on the total storage

requirements, remains an area for fertile research.
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